Life Cycle Thinking and its importance in the context of sustainability management: Review




Environment; Environmental management; Sustainable production; Environmental impacts.


Life Cycle Thinking (LCT) is considered a qualitative study because it describes the environmental impacts of a product or process. This perception allows us to identify the potential effects and resources used, allowing us to structure sustainable ideas, identifying and developing innovative solutions. Establishing the life cycle of a product requires planning and understanding the stages of the production chain, the continuous assessment of processes and their environmental functions, from the extraction of raw materials, transportation, manufacturing process, delivery to the customer and final disposal. Although LCT is considered a philosophy, Life Cycle Assessment (LCA) is a quantitative scientific method that allows you to express this thought. Through life cycle concepts and tools, it becomes possible to define the stages of a product's life cycle, assist decision makers in data analysis and implement sustainability with appropriate strategies and actions. However, the objective of this review is to describe concepts and definitions about LCT and LCA. It is hoped that researchers will be able to guarantee true sustainability in production, which will require careful assessment and multiple considerations based on an in-depth reflection on the product's life cycle.


Ayres, R. U., Ayres, L. W., & Martínas, K. (1998). Exergy, waste accounting, and life-cycle analysis. Energy, 23(5), 355–363.

Bojarska, J. Złoty, P. & Wolf, W. M. (2021). Life Cycle Assessment as tool for realization of Sustainable Development Goals - towards sustainable future of the world: mini review. Angewandte Chemie International Edition, 6(11), 951–952., 38, 5–48.

Burhan, S., Srocka, M., Ciroth, A., & Lemberger, P. (2020). ecoinvent v.3.7 in openLCA. October.

Cucek, L., Klemes, J. J., & Kravanja, Z. (2012). A review of footprint analysis tools for monitoring impacts on sustainability. Journal of Cleaner Production, 34, 9–20.

Dadd, M. F. (2007). Carbon footprint assessment using Life Cycle thinking of a Material Recycling Facility ( MRF ): NEWS ’ MRF as a case By Carbon footprint assessment using Life Cycle thinking of a Material Recycling Facility ( MRF ): NEWS ’ MRF as a case. August.

Department of Environmental Quality - DEQ’s. (2004).

Embrapa. (2019). Principal base de dados internacional de ACV é atualizada e resultados espelham melhor as realidades da agropecuária brasileira. dia 12 de setembro,inéditos para os produtos brasilei

EPA. (2006). Life Cycle Assessment: Principles and Practice. EPA/600/R-06/060. Global Shadows: Africa in the Neoliberal World Order, 44(2), 8–10.

European Commission. (2010). Making sustainable consumption and production a reality. In Production.

Folegatti Matsuura, M. I. S., Sugawara, E. T., Cavalett, O., Ugaya, C. M. L., Braga, T. E. (2017). Interinstitutional partnerships for the development of LCI database. VII Conferencia Internacional de Análisis de Ciclo de Vida En Latinoamérica, 69–72.

Galli, A., Wiedmann, T., Ercin, E., Knoblauch, D., Ewing, B., & Giljum, S. (2012). Integrating Ecological, Carbon and Water footprint into a “footprint Family” of indicators: Definition and role in tracking human pressure on the planet. Ecological Indicators, 16, 100–112.

GreenDelta. (2022). OpenLCA. OpenLCA – the Life Cycle and Sustainability Modeling Suite.

GREENDELTA. (2023). Software OpenLCA.

Guinée, J. B., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., Wegener Sleeswijk, A., Udo De Haes, H. a., de Bruijn, J. a., van Duin, R., & Huijbregts, M. a. J. (2001). Life cycle assessment: An operational guide to the ISO standards. III: Scientific Background, May, 692.

Haes, A. U. H., & Heijungs, R. (2007). Life-cycle assessment for energy analysis and management. Applied Energy, 84(7–8), 817–827.

Hauschild, Z. H. Rosenbaum, R. K. & Olsen, S. I. (2018). Life Cycle Assessment. Theory and Practice. (Springer (Ed.)). Springer.

Hawkins, T., Hendrickson, C., Higgins, C., Matthews, H. S., & Suh, S. (2007). A mixed-unit input-output model for environmental life-cycle assessment and material flow analysis. Environmental Science and Technology, 41(3), 1024–1031.

Hoekstra, A. Y. (2003). Virtual Water Trade. Proceedings of the internacional expert meeting on virtual water trade. International Expert Meeting on Virtual Water Trade, 12(12), 1–244.

Hoekstra, A. Y., & Chapagain, A. K. (2007). Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resources Management, 21(1), 35–48.

IBICT. (2020). Banco Nacional de Inventários do Ciclo de Vida de Produtos Brasileiros.

IBICT. (2021). IBICT. Instituto Brasileiro de Informação em Ciência e Tecnologia. Avaliação Do Ciclo de Vida.

ILCD. (2014). Manual do Sistema ILCD. Sistema Internacional de Referência de Dados do Ciclo de Vida de rodutos e Processos. Guia Geral para Avaliações do Ciclo de Vida Orientações Detalhadas.

Initiative, L. (2019). Life Cycle Initiative - Hotspot analysis tool for sustainable consumption and production.

Islam, S., Ponnambalam, S. G., & Lam, H. L. (2017). A novel framework for analyzing the green value of food supply chain based on life cycle assessment. Clean Technologies and Environmental Policy, 19(1), 93–103.

ISSO 14040. (2006). International Standard - ISO 14040. Environmental management — Life cycle assessment — Principles and framework. The International Journal of Life Cycle Assessment, 2006(7), 652–668.

ISO 14044. (2006). International Standard - ISO 14044. Environmental management — Life cycle assessment — Requirements and guidelines Management. The International Journal of Life Cycle Assessment, 2006(7), 652–668.

LC Initiative. (2021). Life Cycle Initiative homepage.

LCT. (2021). Introduction to Life Cycle Thinking. 4.

MDB. (2014). Guidance on Life-Cycle Thinking and Its Role in Environmental Decision Making Sustainable Materials Management Coalition. March, 28.

Motta, W. R. (2016). Ciclo de vida do produto e a geração de ecoinovações: desafios para o Brasil. Universidade Federal Do Rio de Janeiro – UFRJ. Instituto Brasileiro de Informação Em Ciência e Tecnologia – IBICT.

Patterson, M., McDonald, G., & Hardy, D. (2017). Is there more in common than we think? Convergence of ecological footprinting, emergy analysis, life cycle assessment and other methods of environmental accounting. Ecological Modelling, 362, 19–36.

Pizzol, M., Christensen, P., Schmidt, J., & Thomsen, M. (2011). Eco-toxicological impact of “metals” on the aquatic and terrestrial ecosystem: A comparison between eight different methodologies for Life Cycle Impact Assessment (LCIA). Journal of Cleaner Production, 19(6–7), 687–698.

Postnote. (2006). Carbon footprint of electricity generation. Parliamentary Office of Science and Technology - UK, 43(268), 4.

Raugei, M., Rugani, B., Benetto, E., & Ingwersen, W. W. (2014). Integrating emergy into LCA: Potential added value and lingering obstacles. Ecological Modelling, 271, 4–9.

Rees, W. E. (1992). Ecological footprints and appropriated carrying capacity: what urban economics leaves out. Ecological Footprints, 4, 121–130.

Rodrigues, T. (2020). Revista da Confederação Nacional da Industria. 50, 48.

SICV. (2020). ACV. Avaliação do Ciclo de Vida. SICV Brasil. SICV Brasil.

Suh, S., & Huppes, G. (2005). Methods for life cycle inventory of a product. Journal of Cleaner Production, 13(7), 687–697.

Swarr, T. E. Hunkeler, D. Klöpffer, W. Pesonen, H. L. Ciroth, A. Brent, A. C. & Pagan, R. (2011). Environmental life-cycle costing: A code of practice. International Journal of Life Cycle Assessment, 16(5), 389–391.

Tukker, A. (2000). Life cycle assessment as a tool in environmental impact assessment. Environmental Impact Assessment Review, 20(4), 435–456.

Turner, D. A., Williams, I. D., & Kemp, S. (2016). Combined material flow analysis and life cycle assessment as a support tool for solid waste management decision making. Journal of Cleaner Production, 129, 234–248.

UNEP/SETAC. (2007). Life Cycle Management - A Business Guide to Sustainability.

UNEP/SETAC. (2009). Guidelines for Social Life Cycle Assessment of Products.

UNEP/SETAC. (2011). Towards a Life Cycle Sustainability Assessment.

UNEP/SETAC. (2012). Greening the Economy Through Life Cycle Thinking - Ten Years of the UNEP/SETAC Life Cycle Initiative. In United Nations Environment Programme.

UNEP/SETAC. (2015). Guidance on Organizational Life Cycle Assessment.

Verones, F., Bare, J., Bulle, C., Frischknecht, R., Hauschild, M., Hellweg, S., Henderson, A., Jolliet, O., Laurent, A., Liao, X., Lindner, J. P., Maia de Souza, D., Michelsen, O., Patouillard, L., Pfister, S., Posthuma, L., Prado, V., Ridoutt, B., Rosenbaum, R. K., & Fantke, P. (2017). LCIA framework and cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative. Journal of Cleaner Production, 161, 957–967.

Wiedmann, T, & Minx, J. (2007). Ecological Economics. Chapter 1: A Definition of “Carbon Footprint” (C. C. Pertsova (Ed.)). 2007.




How to Cite

MACIEL, F. de F. .; GATES, R. S. .; TINÔCO, I. de F. F. .; PELLETIER, N.; IBARBURU-BLANC, M. A.; SOUSA, F. C. de .; RENATO, N. dos S. . Life Cycle Thinking and its importance in the context of sustainability management: Review. Research, Society and Development, [S. l.], v. 13, n. 3, p. e2813345034, 2024. DOI: 10.33448/rsd-v13i3.45034. Disponível em: Acesso em: 25 jun. 2024.



Review Article