Evaluation of green banana pulp drying using infrared radiation with temperature control

Authors

DOI:

https://doi.org/10.33448/rsd-v13i2.45087

Keywords:

Infrared drying; Green banana flour; Product quality; Energy efficiency.

Abstract

The green banana flour (GBF) is a functional food rich in resistant starch and nutrients, probiotic, and has low glycemic index. The obtaining of the flour is usually done in dryers with high energy consumption, and possible deteriorating processes. These problems can be minimized with an adaptive temperature control system in infrared heat sources. The aim of this research was to quantify the energy savings in the production of green banana flour produced by infrared drying compared to the conventional process of drying in a resistance oven. The production of flour from green banana pulp was evaluated using an infrared radiation dryer with fruit surface temperature control (IR-FSTC). The IR-FSTC was performed by keeping the pulp surface at 50 °C and 60 °C. The results were compared with conventional drying using a resistive source. The energy consumption of drying using IR-FSTC was significantly reduced compared to the drying by resistive source and prevented the formation of hotspots. The drying process was also evaluated by physicochemical and spectroscopic analyses of the GBF. The product maintained the pH, titratable acidity, total soluble solids, and lipid content with values similar to those obtained by conventional heating oven drying. In turn, the spectroscopic analyses confirmed the maintenance of biomolecules inherent in GBF. Thus, it is concluded that the results contribute to the sustainable use of energy resources in the production of GBF.

References

Aljuhaimi, F., Uslu, N., Bozkurt, D., Ghafoor, K., Babiker. E. E., & Ozcan, M. M. (2016). Effects of oven and microwave drying on phenolic contents and antioxidant activities in four apple cultivars. Quality Assurance and Safety of Crops FoodsI, 8 (1), 51–55.

Alonso, E., Pothan, L. A., Ferreira, A., & Cordeiro, N. (2019). Surface modification of banana fibers using organosilanes: an IGC insight. Cellulose, 26, 3643–3654.

Andrade, B. A., Perius, D. B., Mattos, N. V. D., Lu-Vielmo, M. D. M., & Mellado, M. S. (2018). Produção de farinha de banana verde (Musa spp.) para aplicação em pão de trigo integral. Brazilian Journal of Food Technology, 21: 2–10.

AOAC (2005). Official Methods of Analysis of AOAC International. Washington, DC: Association of Official Analysis Chemists International.

Borges, A. M., Pereira, J., & Lucena, E. M. P. (2009). Caracterização da farinha de banana verde. Food Science and Technology, 29:333– 339.

Carneiro, T. S., Oliveira, G. L. S., Santos, J., Constant, P. B. L., & Carnelossi, M. A. G. (2020). Avaliação da farinha de banana verde com aplicação de antioxidantes. Brazilian Journal of Development, 6(5), 28634–28643.

Carvalho, A. V., Seccadio, L. L., Mourão Júnior, M., & Nascimento, W. M. O. (2011). Qualidade pós-colheita de cultivares de bananeira do grupo “maçã” na região de Belém-PA. Revista Brasileira de Fruticultura, 33 (4),1095–1102.

Castro, M., Jorge, A. P. P., & Santos, P. A. (2019). Propriedades físico-químicas e funcionais de biomassa de banana verde. Global Science and Technology, 12 (1), 53–64.

Cornejo, F. E. P. (2018). Construa você mesmo um desidratador de alimentos. Rio de Janeiro: EMBRAPA-CTAA, 1-23.

Ferreira, C. S., Lima, E. C., & Feijó, M. B. S. (2018). Aproveitamento integral e não convencional da banana verde inativada em forno micro-ondas para elaboração de farinha. Brazilian Journal of Food Research, 9 (4), 164–179.

Fiedorowicz, M., Khachatryan, K., Khachatryan, G. C., & Krzeminska–Fiedorowicz, L. (2010). Implication of nanometals formation in potato starch gel on structure of polysaccharide chains. World Journal of Engineering, 7:148–149.

Franca, L. G. D., Holanda, N. V., Aguiar, R. A. C., Reges, B. M., Costa, F. B., Souza, P. A., Silva, A. G. F., Sales, G. N. B., & Moura, C. F. H. (2020). Elaboração e caracterização de farinhas de banana verde. Research, Society and Development, 9 (7), 1–12.

Ghag, S. B., & Ganapathi, T. R. (2019). Banana and plantains: Improvement, nutrition, and health. In: Mérillon, JM, Ramawat, K (eds). Bioactive molecules in food. Springer, Cham. 1755–1774.

Grasel, F. S., Ferrão, M. F., & Wolf, C. R. (2016). Ultraviolet spectroscopy and chemometrics for the identification of vegetable tannins. Industrial Crops and Products 91, 279–285.

IAL (2008). Métodos físico-químicos para análise de alimentos. Zenebon, O., Pascuet, N. S., Tiglea, P. (eds). São Paulo: Instituto Adolfo Lutz.

Izli, N., Izli, G., & Taskin, O. (2017). Influence of different drying techniques on drying parameters of mango. Food Science and Technology, 37 (4), 604– 612.

Kaijanen, L., Paakkunainen, M., Pietarinen, S., Jernström, E., & Satu-Pia, R. (2015). Ultraviolet detection of monosaccharides: multiple wavelength strategy to evaluate results after capillary zone electrophoretic separation. International Journal of Electrochemical Science, 10:2950-2961.

Lewis, D. A., Fields, W., & Shaw, G. P. (1999). A natural flavonoid present in unripe plantain banana pulp (Musa sapientum L. var. paradisiaca) protects the gastric mucosa from aspirin-induced erosions. Journal of Ethnopharmacology, 65 (3), 283–288.

Lima, B. N. B., Cabral, T. B., Tavares Neto, R. P. C., Tavares, M. I. B., & Pierucci, A. P. T. (2012). Estudo do amido de farinhas comerciais comestíveis. Polímeros: Ciência e Tecnologia, 22 (5), 486–490.

Ljung, L. (1998). System identification. In: Procházk, A., Uhlíř, J., Rayner, P. W. J., & Kingsbury, N. G. (eds). Signal Analysis and Prediction. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston: Springer, 163-173.

Oliveira, T. I. S., Rosa, M. F., Cavalcante, F. L., Pereira, P. H. F, Moates, G. K. T., Wellner, N., Mazzetto, S. E., Waldron, K. W., & Azeredo, H. M. C. (2016). Optimization of pectin extraction from banana peels with acid by using response surface methodology. Food Chemistry, 198: 113–118.

Pekke, M. K., Pan, Z., Atungulu, G. G., Smith, G., & Thompson, J. F. (2013). Drying characteristics and quality of bananas under infrared radiation heating. International Journal of Agricultural and Biological Engineering, 6 (3), 58–70.

Prill, M. A. S., Neves, L. C., Tosin, J. M. T., & Chagas, E. A. (2012). Atmosfera modificada e controle de etileno para bananas “prata-anã” cultivadas na Amazônia Setentrional brasileira. Revista Brasileira de Fruticultura, 34: 990–1003.

Rabello, A. A., Resende, U. C., Gomes, F., Machado, A. M. R., Martins, E., & Soares, I. (2021). Utilização da radiação infravermelha na secagem de amostras de banana. Brazillian Journal of Development, 7 (4), 39317–39330.

Rinaldi, M. M. (2010). Conservação pós-colheita de banana nanicão e prata. Distrito Federal: Embrapa Cerrados, 1-29.

Sá, A. A., Gonçalves, M. I. A., Vasconcelos, T. R., Mendes, M. L.M., & Messias, C. M. B. O. (2021). Avaliação físico-química e nutricional de farinhas de banana verde com casca elaboradas a partir de variedades distintas. Brazilian Journal of Food Technology, e2020020.

Sakare, P., Niranjan, P., Thombare, N., Singh, R., & Sharma, S. C. (2020). Infrared drying of food materials: Recent advances. Food Engineering Reviews, 12 (3), 381–398.

Santos, J. C., Silva, G. F., & Oliveira Júnior, A. M. (2010). Processamento e avaliação da estabilidade da farinha de banana verde. Exacta, 8 (2), 219–224.

Sarawong, C., Schoenlechner, R., Sekiguchi, K., Berghofer, E., & NG, P. K. (2014) Effect of extrusion cooking on the physicochemical properties, resistant starch, phenolic content and antioxidant capacities of green banana flour. Food Chemistry, 143: 33–39.

Seborg, D. E., Edgar, T. F., & Mellichamp, D. A. (2010). Process Dynamics and Control. 3rd ed. New York: John Wiley & Sons.

Sena, L. O., Viana E. S., Reis, R. C., Santana, T. S., & Barreto, N. S. E. (2022). Métodos de conservação para a biomassa de banana verde: efeito nas características físico-químicas e microbiológicas. In: Ciência e tecnologia de alimentos: pesquisa e práticas contemporâneas. São Paulo: Científica Digital. 1-14.

Silva, V. D. M., Arquelau, P. B. F., Silva, M. R., Rodinei, A., Melo, J. O. F., & Fante, C. A. (2020). Use of paper spray-mass spectrometry to determine the chemical profile of ripe banana peel flour and evaluation of its physicochemical and antioxidant properties. Química Nova, 43 (5), 579–585.

Thuto, W., & Banjong, K. (2019). Investigation of heat and moisture transport during microwave heating process. Processes, 7 (545), 2–24.

Tornizielo, I. F., Ricci, M. G., & Rosa, M. T. M. G. (2021). Aplicação de ferramentas da qualidade na análise do desperdício da banana em uma distribuidora da cidade de Campinas-SP. Brazilian Journal of Development, 7 (9), 87267–87286.

Vu, H. T., Scarlett, C. J., & Vuong, Q. V. (2018). Phenolic compounds within banana peel and their potential uses: a review. Journal of Functional Foods, 40: 238–248.

Waszak, M. N., & Ferreira, C. C. D. (2011). Efeito hipoglicemiante das farinhas de banana verde e de maracujá no controle da glicemia em diabéticos. Cadernos UniFOA, 6 (1), 41–50.

Yue, P., & Waring, S. (1998). Resistant starch in food applications. Cereal Foods World, 43 (9), 690–695.

Zhang, J., Jha, S. K., Liu, C., & Hayashi, K. (2019). Tracing of chemical components of odor in peels and flesh from ripe banana on a daily basis using GC-MS characterization and statistical analysis for quality monitoring during storage. Food Analytical Methods, 12 (4), 947–955.

Downloads

Published

25/02/2024

How to Cite

MARTINS, E. C.; RABELLO, A. A.; GOMES, F. de C. O.; GARCIA, C. F. Evaluation of green banana pulp drying using infrared radiation with temperature control. Research, Society and Development, [S. l.], v. 13, n. 2, p. e11513245087, 2024. DOI: 10.33448/rsd-v13i2.45087. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/45087. Acesso em: 21 nov. 2024.

Issue

Section

Agrarian and Biological Sciences