Water productivity at two sowing dates of simple white grain maize hybrids

Authors

DOI:

https://doi.org/10.33448/rsd-v13i4.45230

Keywords:

Diallelic; Phenophases; Irrigation Intervals; Evapotranspiration.

Abstract

In Mexico, maize stands out for its economic, food and cultural importance. Since ancient times, attempts have been made to increase maize grain yields with different alternatives, including hybridization. Currently, maize hybridization offers great advantages since from the first simple hybrids it is possible to evaluate important variables such as water productivity.  The present work was carried out under field conditions in southern Sonora, in two sowing seasons: December 2022- May 2023 (SD 1) and April-August 2023 (SD 2). The research aimed to evaluate the effect of two sowing dates (SD) on phenology, water requirements, water productivity and grain yield. Three single white grain hybrids (L5 X L7; L1 X L2; L2 X L7) obtained from a dialelic design were evaluated. Phenophase occurrence time, irrigation time and interval, total water volume, evapotranspiration, grain yield and water productivity were the evaluated variables. The results showed that in SD 2 significantly reduced the time of occurrence of phenophases in all hybrids due to the effect of temperature. Irrigation time was significantly shorter in SD 2 compared to SD 1. Similarly, the irrigation interval decreased in SD 2 compared to SD 1 with a significant increase in the irrigation lamina. It was necessary to apply two more irrigations to achieve grain filling. Water productivity showed highly significant differences between hybrids and between sowing dates. The simple hybrid L5 X L7 showed better agronomic performance on both sowing dates, demonstrating tolerance to the increase in temperature on SD 2.

References

Allen, G. R., Pereira, S. L., Raes, D., & Smith, M. (2006). Crop evapotranspiration: Guidelines for determining crop water requirements. FAO Irrigation and Drainage Study Publishing House, 298, 56.

Almazán, B. R., Esteller, M. V., Garrido-Hoyos, S. E., Expósito-Castillo, J. L., Díaz-Delgado, C., & García-Colín, J. C. (2023). Nitrogen and phosphorus budget in an intensive irrigation area and effects on littoral water and groundwater (Yaqui Valley, Northwestern Mexico). Environmental Monitoring and Assessment, 195(1), 147. https://doi.org/10.1007/s10661-022-10721-5

Alonso-Sánchez, H., Tadeo-Robledo, M., Espinosa-Calderón, A., Zamudio-González, B., Zaragoza-Esparza, J., & López-López, C. (2022). Water and agronomic evaluation of maize hybrids in response to different environments and nitrogen doses. Agrociencia, 56(1). https://doi.org/10.47163/agrociencia.v56i1.2698

Blankenagel, S., Eggels, S., Frey, M., Grill, E., Bauer, E., Dawid, C., & Avramova, V. (2022). Natural alleles of the abscisic acid catabolism gene ZmAbh4 modulate water use efficiency and carbon isotope discrimination in maize. The Plant Cell, 34(10), 3860-3872. https://doi.org/10.1093/plcell/koac200

Cota, A. O., Ortega, C. A., Valenzuela, V. J. M., & Soqui, G. A. A. (1993). Characterization of 9 hybrid-maize progenitors: Yaqui Valley, Sonora (Mexico). Avances de la Investigación CIANO (Mexico).

Djaman, K., Allen, S., Djaman, D. S., Koudahe, K., Irmak, S., Puppala, N., & Angadi, S. V. (2022). Sowing date and plant density effects on maize growth, yield and water use efficiency. Environmental Challenges, 6, 100417. https://doi.org/10.1016/j.envc.2021.100417

Evarte-Bundere, G., & Evarts-Bunders, P. (2012). Using of the hydrothermal coefficient (HTC) for interpretation of distribution of non-native tree species in Latvia on example of cultivated species of genus Tilia. Acta Biologica Universitatis Daugavpiliensis, 12(2), 135-148.

Gosset, E. (1917). Another differences calculus based on standard deviation and confidence interval. Statistical Reference, 26, 66-72.

Hernández-López, E. (2022). Racializing trade in corn: Mexico fights maize imports and GMOs. Journal of International Economic Law, 25(2), 259-276. https://doi.org/10.1093/jiel/jgac017

Ibarra, E. S., Bustamante, W. O., Cervantes, J. M., Pérez, C. M., & Rangel, P. P. (2021). Water deficit in maize considering phenology, effect on yield and water use efficiency. Agroscience, 55(3), 209-226. https://doi.org/10.47163/agrociencia.v55i3.2414

Inamullah, N. R., Shah, N. H., Arif, M., Siddiq, M., & Mian, I. A. (2011). Correlations among grain yield and yield attributes in maize hybrids at various nitrogen levels. Sarhad Journal of Agriculture, 27(4), 531-538.

Kresović, B., Tapanarova, A., Tomić, Z., Životić, L., Vujović, D., Sredojević, Z., & Gajić, B. (2016). Grain yield and water use efficiency of maize as influenced by different irrigation regimes through sprinkler irrigation under temperate climate. Agricultural Water Management, 169, 34-43. https://doi.org/10.1016/j.agwat.2016.01.023

Li, H., Tiwari, M., Tang, Y., Wang, L., Yang, S., Long, H., & Shao, R. (2022). Metabolomic and transcriptomic analyses reveal that sucrose synthase regulates maize pollen viability under heat and drought stress. Ecotoxicology and Environmental Safety, 246, 114191. https://doi.org/10.1016/j.ecoenv.2022.114191

Martínez-Sifuentes, A. R., Trucíos-Caciano, R., Rodríguez-Moreno, V. M., Villanueva-Díaz, J., & Estrada-Ávalos, J. (2023). The impact of climate change on evapotranspiration and flow in a major basin in Northern Mexico. Sustainability, 15(1), 847. https://doi.org/10.3390/su15010847

Murray-Tortarolo, G. N. (2021). Seven decades of climate change across Mexico. Atmosphere, 34(2), 217-226. https://doi.org/10.20937/atm.52803

Ortega, C. (1997). Selection of heat- and drought-tolerant maize lines for hybrids adapted to the hot arid summer of the irrigated valleys of northwestern Mexico. In Developing Drought- and Low N-Tolerant Maize: Proceedings of a Symposium (El Batán, Mexico).

Padilla-Fidencio, V., Albino-Garduño, R., Santiago-Mejía, H., Turren-Fernández, A., Ronquillo-Cedillo, I., & González-Pablo, L. (2022). Intensification of milpa in the State of Mexico: Net incomes, food security and land equivalent ratio. Agrociencia, 56(4), 727-751. https://doi.org/10.47163/agrociencia.v56i4.2453

Piccinni, G., Ko, J., Marek, T., & Howell, T. (2009). Determination of growth-stage-specific crop coefficients (KC) of maize and sorghum. Agricultural Water Management, 96(12), 1698-1704. https://doi.org/10.1016/j.agwat.2009.06.024

Portillo-Vázquez, M.,; Sangermán-Jarquín, D. M., & Pérez Robles, K. (2023). Creation of highly specialized agricultural regions in maize cultivation, Case study: Sinaloa, Sonora, Nayarit and Jalisco. Revista Mexicana de Ciencias Agrícolas, 14(2), 303-309. https://doi.org/10.29312/remexca.v14i2.3421

Schoper, J. B., Lambert, R. J., & Vasilas, B. L. (1986). Maize pollen viability and ear receptivity under water and high temperature stress. Crop Science, 26(5), 1029-1033. https://doi.org/10.2135/cropsci1986.0011183X002600050038x

Shuai, G., & Basso, B. (2022). Subfield maize yield prediction improves when in-season crop water deficit is included in remote sensing imagery-based models. Remote Sensing of Environment, 272, 112938. https://doi.org/10.1016/j.rse.2022.112938

Siafeson (2023). SD 1: Dec/2023-May/2023 and SD 2: Apr-Aug/2023). Data available at: [URL]

Sun, J., Wang, H., Ren, H., Zhao, B., Zhang, J., Ren, B., & Liu, P. (2023). Maize (Zea mays L.) responses to heat stress: Mechanisms that disrupt the development and hormone balance of tassels and pollen. Journal of Agronomy and Crop Science, 209(4), 502-516. https://doi.org/10.1111/jac.12644

Tiwari, Y. K., & Yadav, S. K. (2019). High temperature stress tolerance in maize (Zea mays L.): Physiological and molecular mechanisms. Journal of Plant Biology, 62, 93-102. https://doi.org/10.1007/s12374-018-0350-x

Valdez-Torres, J. B., Soto-Landeros, F., Osuna-Enciso, T., & Báez-Sañudo, M. A. (2012). Phenological prediction models for white maize (Zea mays L.) and budworm (Spodoptera frugiperda JE Smith). Agrociencia, 46(4), 399-410.

Villaseñor, M. H. E., Huerta, E. J., Santa, R. R. H., Solís, M. E., Alvarado, P. J. I., & Martínez C. E. (2023). Fuertemayo F2016: variety of bread wheat for irrigated sowings in Mexico. Revista Mexicana de Ciencias Agrícolas, 14(1), 135-140. https://doi.org/10.29312/remexca.v14i1.2806

Wang, L., Jahari, S., Wu, J., Wang, N., Pang, M., & Jin, L. (2023). Interactive effects of biochar and chemical fertilizer on water and nitrogen dynamics, soil properties and maize yield under different irrigation methods. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1230023

Wang, Y., Liu, X., Hou, X., Sheng, D., Dong, X., Gao, Y., & Huang, S. (2021). Maximum lethal temperature for flowering and seed set in maize with contrasting male and female flower sensitivities. Journal of Agronomy and Crop Science, 207(4), 679-689. https://doi.org/10.1111/jac.12506

Wang, Y., Tao, H., Tian, B., Sheng, D., Xu, C., Zhou, H., & Wang, P. (2019). Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environmental and Experimental Botany, 158, 80-88. https://doi.org/10.1016/j.envexpbot.2018.11.007

Woodmansee, A. (2022). Maize landraces and drought: seed systems in San Miguel del Valle, Oaxaca, Mexico. Journal of Ethnobiology, 42(4), 477-494. https://doi.org/10.2993/0278-0771-42.4.477

Downloads

Published

05/04/2024

How to Cite

PÉREZ-LÓPEZ, L.; ALGENTEL-MARTÍNEZ, L. .; PEÑUELAS-RUBIO , O. .; CERVANTES-ORTIZ , F. .; ANDRIO ENRIQUEZ, E. .; AGUIRRE-MANCILLA , C. L. .; GONZÁLEZ AGUILERA, J. .; LEYVA PONCE, J. A. .; GARCÍA URÍAS, J. C. .; GARATUZA-PAYÁN, J. Water productivity at two sowing dates of simple white grain maize hybrids. Research, Society and Development, [S. l.], v. 13, n. 4, p. e0213445230, 2024. DOI: 10.33448/rsd-v13i4.45230. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/45230. Acesso em: 16 may. 2024.

Issue

Section

Agrarian and Biological Sciences