The suscebility of hipertensive patients to contract COVID-19 and develop a serious form of disease

Authors

DOI:

https://doi.org/10.33448/rsd-v13i3.45413

Keywords:

COVID-19; Hypertension; Renin-Angiotensin System.

Abstract

Objective: Establish the relationship between hypertensive patients who contracted COVID-19 and developed severe forms. Methodology: This is an integrative review of the literature carried out in the months of February and March 2024, in the Scielo, Lilacs, MedLine and PubMed databases, using the following descriptors in health sciences: “COVID-19”, “Hypertension” and “Renin-Angiotensin System”, by the Boolean operator AND. In total, 537 studies were found, after the inclusion criteria (articles published between 2019 and 2024, in Portuguese and English) and complete reading, 16 studies were selected to prepare the review. Results: COVID-19 infection causes endothelial dysfunction, exacerbating a pro-inflammatory state. All inflammation causes an increase in renin in the patient's body, accentuating the RAS. Consequently, patients with SAH have a higher concentration of (ACE-II) in the lung epithelia, the SARS-CoV-2 receptor enzyme. Furthermore, the virus inactivates enzymes that are important for reducing the patient's blood pressure. By decreasing ACE II we have an increase in (ACE-I) and this is related to lung injuries and degradation of bradykinin, an important vasodilator and bronchodilator hormone. It is clear that the development of the severe form of the disease in hypertensive patients occurs due to the inflammatory state of the disease, which is exacerbated, such as the imbalance of the RAS due to organ damage. Conclusion: Therefore, any patient with pro-inflammatory conditions tends to have a more severe condition from COVID-19. Concomitantly with hypertension, an increase in ACE-I causes vasoconstriction and bronchoconstriction and a decrease in ACE-II, deregulating other factors that favor thrombogenic events.

References

Angeli, F., Zappa, M., & Verdecchia, P. (2024). Global burden of new-onset hypertension associated with severe acute respiratory syndrome coronavirus 2 infection. European journal of internal medicine, 119, 31–33. https://doi.org/10.1016/j.ejim.2023.10.016

Baral, R., White, M., & Vassiliou, V. S. (2020). Effect of Renin-Angiotensin-Aldosterone System Inhibitors in Patients with COVID-19: a Systematic Review and Meta-analysis of 28,872 Patients. Current atherosclerosis reports, 22(10), 61. https://doi.org/10.1007/s11883-020-00880-6

Bielecka, E., Sielatycki, P., Pietraszko, P., Zapora-Kurel, A., & Zbroch, E. (2024). Elevated Arterial Blood Pressure as a Delayed Complication Following COVID-19-A Narrative Review. International journal of molecular sciences, 25(3), 1837. https://doi.org/10.3390/ijms25031837

Chen, H., Peng, J., Wang, T., Wen, J., Chen, S., Huang, Y., & Zhang, Y. (2023). Counter-regulatory renin-angiotensin system in hypertension: Review and update in the era of COVID-19 pandemic. Biochemical pharmacology, 208, 115370. https://doi.org/10.1016/j.bcp.2022.115370

Devaux, C. A., & Camoin-Jau, L. (2022). An update on angiotensin-converting enzyme 2 structure/functions, polymorphism, and duplicitous nature in the pathophysiology of coronavirus disease 2019: Implications for vascular and coagulation disease associated with severe acute respiratory syndrome coronavirus infection. Frontiers in microbiology, 13, 1042200. https://doi.org/10.3389/fmicb.2022.1042200

Dutsch, A., & Schunkert, H. (2023). RAAS inhibition and beyond-cardiovascular medications in patients at risk of or affected by COVID-19. RAAS-Hemmung und darüber hinaus – Herz-Kreislauf-Medikation bei Patienten mit einem Risiko für oder Erkrankung durch COVID-19. Herz, 48(3), 206–211. https://doi.org/10.1007/s00059-023-05168-4

Elbasan, O., Bayram, F., Yazan, C. D., Apaydın, T., Dashdamirova, S., Polat, H., Arslan, E., Yılmaz, İ., Karimi, N., Şengel, B. E., Yılmaz, S. S., Çelik, Ö. F., Ata, P., Haklar, G., & Gözü, H. (2023). Angiotensin-Converting Enzyme (ACE) level, but not ACE gene polymorphism, is associated with prognosis of COVID-19 infection: Implications for diabetes and hypertension. PloS one, 18(7), e0288338. https://doi.org/10.1371/journal.pone.0288338

Jamil, G., Ataee, M., Esmaeili, V., Chamani, S., Rezaei, A., & Naghizadeh, A. (2023). Characterization of the angiotensin-converting enzyme 2 (ACE2), the main receptor for the SARS-CoV-2 virus. American journal of clinical and experimental immunology, 12(3), 24–44.

Kartchner, D., McCoy, K., Dubey, J., Zhang, D., Zheng, K., Umrani, R., Kim, J. J., & Mitchell, C. S. (2023). Literature-Based Discovery to Elucidate the Biological Links between Resistant Hypertension and COVID-19. Biology, 12(9), 1269. https://doi.org/10.3390/biology12091269

Kounis, N. G., Gogos, C., de Gregorio, C., Hung, M. Y., Kounis, S. N., Tsounis, E. P., Assimakopoulos, S. F., Pourmasumi, S., Mplani, V., Servos, G., Dousdampanis, P., Plotas, P., Michalaki, M. A., Tsigkas, G., Grammatikopoulos, G., Velissaris, D., & Koniar, I. (2024). "When," "Where," and "How" of SARS-CoV-2 Infection Affects the Human Cardiovascular System: A Narrative Review. Balkan medical journal, 41(1), 7–22. https://doi.org/10.4274/balkanmedj.galenos.2023.2023-10-25

Kurdi, A., Mueller, T., & Weir, N. (2023). An umbrella review and meta-analysis of renin-angiotensin system drugs use and COVID-19 outcomes. European journal of clinical investigation, 53(2), e13888. https://doi.org/10.1111/eci.13888

Lima, F. B., Muniz, F. W. M. G., Meneses, G. C., Bezerra, K. C., Moreira, C. N., Aguiar, A. P., Nascimento, J. C. R., Veras de S Freitas, T., de Bruin, P. F. C., Pereira, E. D. B., Daher, E. F., & Oriá, R. B. (2024). Influence of angiotensin receptor and converting enzyme blockers therapy in the respiratory outcome of COVID-19 hospitalized patients. Medicina clinica, 162(4), 163–169. https://doi.org/10.1016/j.medcli.2023.10.004

Liu, Q., Fu, W., Zhu, C. J., Ding, Z. H., Dong, B. B., Sun, B. Q., & Chen, R. C. (2023). Effect of continuing the use of renin-angiotensin system inhibitors on mortality in patients hospitalized for coronavirus disease 2019: a systematic review, meta-analysis, and meta-regression analysis. BMC infectious diseases, 23(1), 53. https://doi.org/10.1186/s12879-023-07994-7

Martínez-Del Río, J., Piqueras-Flores, J., Nieto-Sandoval Martín de la Sierra, P., Negreira-Caamaño, M., Águila-Gordo, D., Mateo-Gómez, C., Salas-Bravo, D., & Rodríguez-Martínez, M. (2020). Comparative analysis between the use of renin-angiotensin system antagonists and clinical outcomes of hospitalized patients with COVID-19 respiratory infection. Medicina clinica (English ed.), 155(11), 473–481. https://doi.org/10.1016/j.medcle.2020.07.013

Muntner, P., Foti, K., Wang, Z., Alanaeme, C. J., Choi, E., Bress, A. P., Shimbo, D., & Kronish, I. (2023). Discontinuation of Renin-Angiotensin System Inhibitors During the Early Stage of the COVID-19 Pandemic. American journal of hypertension, 36(7), 404–410. https://doi.org/10.1093/ajh/hpad027

Oliveira, K. B., de Melo, I. S., da Silva, B. R. M., Oliveira, K. L. D. S., Sabino-Silva, R., Anhezini, L., Katayama, P. L., Santos, V. R., Shetty, A. K., & de Castro, O. W. (2023). SARS-CoV-2 and Hypertension: Evidence Supporting Invasion into the Brain Via Baroreflex Circuitry and the Role of Imbalanced Renin-Angiotensin-Aldosterone-System. Neuroscience insights, 18, 26331055231151926. https://doi.org/10.1177/26331055231151926

Shams, E., Kamalumpundi, V., Cheng, L., Taiwo, A., Shibli-Rahhal, A., Dokun, A. O., & Correia, M. L. G. (2023). Association between RAAS Antagonism and COVID-19-related Mortality in Patients with Overweight/Obesity-related Hypertension: A Retrospective Cohort Study. Associação entre o Antagonismo do Sistema Renina-Angiotensina-Aldosterona e a Mortalidade Relacionada à COVID-19 em Pacientes com Hipertensão Relacionada ao Sobrepeso/Obesidade: um Estudo Retrospectivo de Coorte. Arquivos brasileiros de cardiologia, 120(4), e20220277. https://doi.org/10.36660/abc.20220277

Tanzadehpanah, H., Lotfian, E., Avan, A., Saki, S., Nobari, S., Mahmoodian, R., Sheykhhasan, M., Froutagh, M. H. S., Ghotbani, F., Jamshidi, R., & Mahaki, H. (2023). Role of SARS-COV-2 and ACE2 in the pathophysiology of peripheral vascular diseases. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 166, 115321. https://doi.org/10.1016/j.biopha.2023.115321

Teng, S., & Tang, Q. (2020). ACE2 enhance viral infection or viral infection aggravate the underlying diseases. Computational and structural biotechnology journal, 18, 2100–2106. https://doi.org/10.1016/j.csbj.2020.08.002

Vallejo Ardila, D. L., Tamayo Cáceres, Y. R., & Munive, A. A. (2020). Uso terapéutico de los inhibidores de la enzima convertidora de angiotensina en pacientes con COVID-19: las «dos caras de la moneda» [Therapeutic use of angiotensin converting enzyme inhibitors in patients with COVID-19: the “two sides of the coin”]. Revista Colombiana De Cardiologi´a, 27(4), 212–222. https://doi.org/10.1016/j.rccar.2020.07.001

Published

04/04/2024

How to Cite

BATISTA, C. K. S. .; GOMES, J. M. I. .; AMORIM JÚNIOR, A. L. de; FARIAS, R. T. F. .; GOMES, C. H. P. .; LINS NETO, J. S. .; ANDRADE, L. N. S. R. de .; ARAÚJO, T. F. D. .; MARTINS, A. C. P. .; CABRAL, V. de M. .; CAVALCANTI, E. C. S. .; PEREIRA, J. V. A. . The suscebility of hipertensive patients to contract COVID-19 and develop a serious form of disease. Research, Society and Development, [S. l.], v. 13, n. 3, p. e14313345413, 2024. DOI: 10.33448/rsd-v13i3.45413. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/45413. Acesso em: 8 may. 2024.

Issue

Section

Health Sciences