Concentration in food and biological action of antinutritional compounds: A review
DOI:
https://doi.org/10.33448/rsd-v13i4.45497Keywords:
Food science; Food composition; Revision.Abstract
Antinutritional compounds are produced by the secondary metabolism of plants and have several functions, including protecting against predator attacks. These substances can reduce the bioavailability of nutrients, affect the digestibility of proteins, as well as cause toxic effects to the body when consumed in excess. However, in addition to harmful effects, some of these phytochemicals may also have beneficial effects on human health. This review aims to present data on the presence and content of antinutrients in vegetables and also report functional effects of some of these compounds. The present work is an integrative review, in which a search was carried out in the electronic databases Science Direct, Google Scholar and the Integrated Search Portal of the University of São Paulo, bringing together articles that addressed the concentration of antinutritional compounds in plant foods. used in human nutrition. The most abundant antinutrients in the foods evaluated were phytates, followed by tannins, oxalates, saponins, protease inhibitors (including trypsin inhibitors), nitrates, cyanogenic glycosides, non-digestible carbohydrates (raffinose, stachyose and verbascose) and glucosinolates. This review presented important data on the presence and content of antinutritional compounds in fresh and processed vegetables, highlighting the occurrence of phytates, tannins and oxalates. Research has shown harmful effects and also beneficial actions of the compounds, however, the potential of these molecules still needs to be investigated to elucidate their beneficial effects on human health and their applications.
References
Adebiyi, J. A., Njobeh, P. B., & Kayitesi, E. (2019). Assessment of nutritional and phytochemical quality of Dawadawa (an African fermented condiment) produced from Bambara groundnut (Vigna subterranea). Microchemical Journal, 149, 104034. 10.1016/j.microc.2019.104034
Adeyemo, S. M., & Oniluode, A. A. (2013). Enzymatic reduction of anti-nutritional factors in fermenting soybeans by Lactobacillus plantarum isolates from fermenting cereals. Nigerian Food Journal, 31(2), 84-90.
Agarwal, R., et al. (2014). Non-digestible oligosaccharides and their role in diabetes. Current Diabetes Reviews, 10(5), 322-332. 10.2174/156890141005140828
Alves, V. M., et al. (2020). Gabiroba e Murici: Estudo do valor nutricional e antinutricional da casca, polpa e semente. Research, Society and Development, 9(5), e152953260. 10.3399/rsd.v9i5.p.e152953260
Araújo, S. D. S., Araújo, P. D. S., Giunco, A. J., Silva, S. M., & Argandaña, E. J. S. (2019). Bromatology, food chemistry and antioxidant activity of Xanthosoma sagittifolium (L.) Schott. Emirates Journal of Food and Agriculture, 31(3), 188-195. 10.9755/ejfa.2019.v31.i3.1924
Arise, A. K., et al. (2022). Influence of processing methods on the antinutrients, morphology and in-vitro protein digestibility of jack bean. Food Chemistry Advances, 1, 100078. 10.1016/j.focha.2022.100078
Astley, S., & Paul, F. (2016). Nutrition and health. In Reference Module in Food Science (pp. 341-352). Elsevier. 10.1016/B978-0-08-100596-5.03425-9
Atuna, R. A., et al. (2022). Traditional processing methods reduced phytate in cereal flour, improved nutritional, functional and rheological properties. Scientific African, 15, e01063. 10.1016/j.sciaf.2021.e01063
Barroso, L. S., et al. (2013). A Influência dos Processos Térmicos na Atividade das Lectinas de Ervilha e de Lentilha. Salão de Ensino - UFRGS, 9.
Berardo, A., et al. (2016). Effect of sodium ascorbate and sodium nitrite on protein and lipid oxidation in dry fermented sausages. Meat Science, 121, 359-364. 10.1016/j.meatsci.2016.07.003
Battelli, M., et al. (2024). Condensed tannins fed to dairy goats: effects on digestibility, milk production, blood parameters, methane emission, and energy and nitrogen balances. Journal of Dairy Science. 10.3168/jds.2023-24076
Benevides, C., et al. (2017). Processing Effect Assessment in Contents Phenolic Total and Antioxidant Capacity of the Bean Mangalô (Lablab Purpureus (L.) Sweet) and Bean Guandu (Cajanus Cajan (L.) Mill Sp). Revista Virtual de Química, 9(2), 827-837. 10.21577/1984-6835.20170051
Benevides, C. M. J., et al. (2011). Fatores antinutricionais em alimentos: revisão [Antinutritional factors in food: a review]. Segurança Alimentar e Nutricional, 18(2), 67-79.
Bento, J. A. C., et al. (2021). Chemical profile of colorful bean (Phaseolus vulgaris L) flours: Changes influenced by the cooking method. Food chemistry, 356, 129718.
Bergamin, G. T., et al. (2013). Extração de antinutrientes e aumento da qualidade nutricional dos farelos de girassol, canola e soja para alimentação de peixes. Ciência Rural, 43(10), 1878-1884. 10.1590/S0103-847
Boakye, P. G., et al. (2023). Reduction of FODMAPs and amylase-trypsin inhibitors in wheat: A review. Food Hydrocolloids for Health, 3, 100117. 10.1016/j.fhfh.2023.100117
Bolarinwa, I. F., Orfila, C., & Morgan, M. R. A. (2014). Amygdalin content of seeds, kernels and food products commercially-available in the UK. Food Chemistry, 152, 133-139. 10.1016/j.foodchem.2013.11.002
Borges, M. H., et al. (2020). Inibidores enzimáticos de amilases: ocorrência, atividade biológica e potenciais aplicações em alimentos. Brazilian Journal of Food Technology, 23.
Brigidé, P., et al. (2019). Fe and Zn in vitro bioavailability in relation to antinutritional factors in biofortified beans subjected to different processes. Food Function, 10(8), 4802-4810. 10.1039/C9FO00199A
Bushway, R. J., & Ponnampalam, R. (1981). alpha-chaconine and alpha-solanine content of potato products and their stability during several modes of cooking. Journal of Agricultural and Food Chemistry, 29(4), 814-817
Calvo, M. S., & Uribarri, J. (2021). Perspective: Plant-based Whole-Grain Foods for Chronic Kidney Disease: The Phytate-Phosphorus Conundrum. Advances in Nutrition, 12(6), 2056-2067. 10.1093/advances/nmab066
Carvalho, N. L., & Zabot, V. (2012). Nitrogênio: nutriente ou poluente? Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, 6, 960-974. 10.5902/223611704671
Carvalho, M. A., et al. (2015). Simultaneous saccharification and fermentation of soybean meal: assessing the impacts of raffinose and stachyose. Food Chemistry, 166, 363-370
Cecarini, V. (2022). Targeting Proteolysis with Cyanogenic Glycoside Amygdalin Induces Apoptosis in Breast Cancer Cells. Molecules, 27(21), 7591. 10.3390/molecules27217591
Chang, M. J., et al. (1994). Cowpeas tannins related to cultivar, maturity, dehulling and heating. Journal of Food Science, 59(5), 1034-1036
Chaturvedi, S., Chakraborty, S., et al. (2022). Optimization of extraction process for legume-based synbiotic beverages, followed by their characterization and impact on antinutrients. International Journal of Gastronomy and Food Science, 28, 100506. 10.1016/j.ijgfs.2022.100506
Coscueta, E. R., et al. (2023). Production of soy protein concentrate with the recovery of bioactive compounds: From destruction to valorization. Food Hydrocolloids, 137, 108314. 10.1016/j.foodhyd.2022.108314
Damiani, C., et al. (2013). Perfil de ácidos graxos e fatores antinutricionais de amêndoas de pequi crua e torrada. Pesquisa Agropecuária Tropical, 43, 71-78
Das, G., Sharma, A., & Sarkar, P. K. (2022). Conventional and emerging processing techniques for the post-harvest reduction of antinutrients in edible legumes. Applied Food Research, 2(1), 100112. 10.1016/j.afres.2022.100112
Ding, X., et al. (2013). Purification, antitumor activity in vitro of steroidal glycoalkaloids from black nightshade (Solanum nigrum L.). Food Chemistry, 141(2), 1181-1186. 10.1016/j.foodchem.2013.03.062
Diniz, M. F. F. M., et al. (2017). Plant protease inhibitors: an overview of their potential role in combating inflammatory and autoimmune diseases. International Journal of Biological Macromolecules, 97, 28-37. 10.1016/j.ijbiomac.2017.01.022
Domene, S. M. A., Pereira, T. C., & Arrivillaga, R. K. (2008). Estimativa da disponibilidade de zinco em refeições com preparações padronizadas da alimentação escolar do município de Campinas. Rev Nutr, 21(2), 161-167
Dong, Q., & Tu, K. (2006). Progresso da pesquisa sobre o mecanismo bacteriostático do nitrito em carne conservada. J Progress in Modern Biomedicine, 2(3), 48-52
Farady, C. J., et al. (2008). Structure of an Fab–protease complex reveals a highly specific non-canonical mechanism of inhibition. Journal of molecular biology, 380(2), 351-360. 10.1016/j.jmb.2008.03.042
Faria-Silva, C., et al. (2022). Alpha-tomatine and the two sides of the same coin: An anti-nutritional glycoalkaloid with potential in human health. Food Chemistry, 391, 133261. 10.1016/j.foodchem.2022.133261
Fernandes, A. C., & Proença, R. P. C. (2011). Técnicas recomendadas para pré-preparo de feijão: remolho e descarte de água. Nutrição em Pauta, 19(111), 50-5
Ferreira, P. M. P., et al. (2008). Moringa oleifera: bioactive compounds and nutritional potential. Revista de Nutrição, 21, 431-437
Fleck, J. D., et al. (2019). Saponins from Quillaja saponaria and Quillaja brasiliensis: particular chemical characteristics and biological activities. Molecules, 24(1), 171
Furtunato, D. M. N., Trigueiro, I. N. S., & Góes, J. Â. W. (2003). Fitatos na alimentação humana: uma visão abrangente. Higiene Alimentar, 17(107), 16-20
Garcia-Almendarez, B. E., et al. (2019). Thermal processing and nutritional quality of legumes. Journal of Food Science and Technology, 56(7), 3083-3091
Gibson, R. S., Bailey, K. B., Gibbs, M., & Ferguson, E. L. (2010). Uma revisão das concentrações de fitato, ferro, zinco e cálcio em alimentos complementares à base de plantas usados em países de baixa renda e implicações para a biodisponibilidade. Food and Nutrition Bulletin, 31, 134-146
Gitanjali, J. (2023). Antimicrobial, antioxidant, anticancer, and antithrombotic competency of saponins from the root of Decalepis hamiltonii. Environmental Research, 231(1), 116096. https://doi.org/10.1016/j.envres.2023.116096
Gleadow, R. M., & Møller, B. L. (2014). Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. Annual Review of Plant Biology, 65, 155-185. 10.1146/annurev-arplant-050213-040027
Gomes, F. A. et al. (2012). Aspectos nutritivos de feijões crioulos cultivados no Vale do Juruá, Acre, Brasil. Enciclopédia Biosfera, 8(14)
Gomezulu, A. D., & Mongi, R. J. (2022). Protein content and anti-nutritional factors in pigeon pea and effect of its protein isolate on physical properties and consumer preference of beef sausages. Applied Food Research, 2(1), 100047
Goudar, G. et al. (2023). Phenolic, nutritional and molecular interaction study among different millet varieties. Food Chemistry Advances, 2, 10015
Guéraud, F. (2015). Dietary polyunsaturated fatty acids and heme iron induce oxidative stress biomarkers and a cancer promoting environment in the colon of rats. Free Radical Biology and Medicine, 83, 192-200. 10.1016/j.freeradbiomed.2015.02.023
Gul, Z. et al. (2023). Phytonutrient and antinutrient components profiling of Berberis baluchistanica Ahrendt bark and leaves. Journal of King Saud University - Science, 35(2), 102517. 10.1016/j.jksus.2022.102517
Gunawan, S. et al. (2022). Effect of process production on antinutritional, nutrition, and physicochemical properties of modified sorghum flour. Arabian Journal of Chemistry, 15(10), 104134. 10.1016/j.arabjc.2022.104134
Habermeyer, M. et al. (2015). Nitrate and nitrite in the diet: how to assess their benefit and risk for human health. Molecular Nutrition & Food Research, 59(1), 106-128
Hamad, S. A. A. et al. (2019). Nutritional quality of raw and cooked flours of a high β-glucan sorghum inbred line. Journal of Cereal Science, 90, 102857
Higashijima, N. S., Lucca, A., Rebizzi, L. R. H., & Rebizzi, L. M. H. (2020). Fatores antinutricionais na alimentação humana. Segurança Alimentar e Nutricional, 27, 1-16
Hospital, X. F. et al. (2016). A study on the toxigenesis by Clostridium botulinum in nitrate and nitrite-reduced dry fermented sausages. International Journal of Food Microbiology, 218, 66-70. 10.1016/j.ijfoodmicro.2015.11.009
Hosseini, M. et al. (2023). A worldwide systematic review, meta-analysis and meta-regression of nitrate and nitrite in vegetables and fruits. Ecotoxicology and Environmental Safety, 257, 114934. 10.1016/j.ecoenv.2023.114934
Huang, X. et al. (2023). Effects of fresh-cut and storage on glucosinolates profile using broccoli as a case study. Horticultural Plant Journal, 9(2), 285-292
Huynh, N. K. et al. (2022). Effects of processing on oxalate contents in plant foods: A review. Journal of Food Composition and Analysis, 112, 104685. 10.1016/j.jfca.2022.104685
Ijarotimi, O. S., Ogunjobi, O. G., & Oluwajuyitan, T. D. (2022). Gluten free and high protein-fiber wheat flour blends: Macro-micronutrient, dietary fiber, functional properties, and sensory attributes. Food Chemistry Advances, 1, 100134
International Agency for Research on Cancer. Working Group on the Evaluation of Carcinogenic Risks to Humans. (2018). Red meat and processed meat. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Lyon, France
Johnston, B. C. et al. (2019). Unprocessed red meat and processed meat consumption: Dietary guideline recommendations from the NutriRECS Consortium. Anais de Medicina Interna, 171(10), 756-764
Joubert, P. et al. (2016). Hypothesis: Phytate is an important unrecognized nutrient and potential intravenous drug for preventing vascular calcification. Medical Hypotheses, 94, 89-92. 10.1016/j.mehy.2016.07.005
Junior, E. N. M. et al. (2018). Caracterização Físico-Química e Determinação de Ácido Cianídrico em Folhas de Mandioca (Manihot esculenta Crantz). XXVI Congresso Brasileiro de Ciência dos Alimentos
Kang, P. et al. (2023). Effects of replacing fishmeal with rapeseed meal and dietary condensed tannins on antioxidant capacity, immunity, and hepatic and intestinal health of largemouth bass (Micropterus salmoides). Aquaculture Reports, 30, 101548. 10.1016/j.aqrep.2023.101548
Kasprchak, E. et al. (2020). Interactions of antinutrients mixtures with bovine serum albumin and its influence on in vitro protein digestibility. Journal of Molecular Liquids, 315, 113699. 10.1016/j.molliq.2020.113699
Keuleyan, E. et al. (2022). In vitro digestion of nitrite and nitrate preserved fermented sausages – New understandings of nitroso-compounds’ chemical reactivity in the digestive tract. Food Chemistry: X, 16, 100474. 10.1016/j.fochx.2022.100474
Kim, J. T. et al. (2015). Protease inhibitors from plants with antimicrobial activity. International Journal of Molecular Sciences, 16(5), 9650-9668
Kiewlicz, J. A., & Rybicka, I. (2020). Minerals and their bioavailability in relation to dietary fiber, phytates and tannins from gluten and gluten-free flakes. Food Chemistry, 305, 125452. 10.1016/j.foodchem.2019.125452
Kiranmayi, P. (2014). Is bioactive compounds in plants acts as anti nutritonal factors. International Journal of Current Pharmaceutical Research, 6(2), 36-38.
Kirkhus, B. et al. (2019). Increased release of carotenoids and delayed in vitro lipid digestion from high-pressure homogenized tomato and capsicum emulsions. Food Chemistry, 285, 282-289
Kruger, J. et al. (2015). Potential contribution of African green leafy vegetables and maize porridge composite meals to iron and zinc nutrition. Nutrition, 31(9), 1117-1123
Kumar, P. et al. (2022). Hydroxyproline stimulates inflammation and reprograms macrophage signaling in a rat kidney stone model. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1868(9), 166442. 10.1016/j.bbadis.2022.166442
Labba, I. M., Frøkiær, H., & Sandberg, A. (2021). Nutritional and antinutritional composition of fava bean (Vicia faba L., var. minor) cultivars. Food Research International, 140, 110038
Lagarda-Diaz, I. et al. (2017). Lectinas de leguminosas: proteínas com diversas aplicações. Journal of International Molecular Sciences, 18(6), 1242
Landim, L. A. S. R. et al. (2013). Conteúdo de fenólicos totais, antocianinas, taninos e atividade antioxidante de três cultivares de feijão-caupi. Embrapa Meio-Norte-Artigo em Anais de Congresso (ALICE)
Lanteri, M. L. et al. (2023). Metabolite profiling and cytotoxic activity of Andean potatoes: Polyamines and glycoalkaloids as potential anticancer agents in human neuroblastoma cells in vitro. Food Research International, 168, 112705. 10.1016/j.foodres.2023.112705
Lee, J. et al. (2013). Quantificação de amigdalina em amêndoas amargas, semiamargas e doces (Prunus dulcis) por UHPLC-(ESI)QqQ MS/MS. Journal of Agricultural and Food Chemistry, 61(32), 7754-7759. 10.1021/jf402295u
Lemos, L. C. S. Et al. (2019). Avaliação sensorial, microbiológica e dos compostos bioativos de biscoito tipo cookie desenvolvido com bagaço de cerveja e castanha de baru. Brazilian Journal of Development, 5(12), 31030-31041
Liener, I. E. (1994). Implications of antinutritional components in soybean foods. Critical Reviews in Food Science and Nutrition, 34(1), 31-67
Lima, V. C. O. et al. (2019). Trypsin inhibitors: promising candidate satietogenic proteins as complementary treatment for obesity and metabolic disorders?. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 405-419
Li, S. et al. (2007). Modification of Sugar Chains in Glycoalkaloids and Variation of Anticancer Activity. Chemical Research in Chinese Universities, 23(3), 303-309. 10.1016/S1005-9040(07)60065-8
Lopez-Moreno, M., Garces-Rimon, M., & Miguel, M. (2022). Antinutrients: Lectins, goitrogens, phytates and oxalates, friends or foe?. Journal of Functional Foods, 89, 104938
Lumen, B.O de; Salamat, L.A (1980). Trypsin inhibitor activity in winged bean (Psophocarpus tetragonolobus) and the possible role of tannin. Journal of Agricultural and Food Chemistry. Washington DC, 28(3), 533-536
Ma, T., Sun, Q., Ba, G.-N., Wu, X., Pei, X., Sun, C., Tan, S., & Wan, Z. (2023). Effects of low phytate soymilk intake on calcium, iron and zinc status in male Sprague-Dawley rats. Journal of Functional Foods, 106(105595), 105595. 10.1016/j.jff.2023.105595
Ma, Z., Boye, J I & Hu, X. (2018). Nutritional quality and techno-functional changes in raw, germinated and fermented yellow field pea (Pisum sativum L.) upon pasteurization. LWT, 92, 147-154
Machado, R. M. D & Toledo, M. C. F. (1004) Determinação de glicoalcalóides em batatas in natura (Solanum tuberosum L.) comercializadas na cidade de Campinas, Estado de São Paulo. Food Science and Technology, 24(1), 47-52. 10.1590/S0101-20612004000100010
Maga, J. A. (1982). Phytate: Its chemistry, ocurrence, food interactions, nutritional significance, and methods of analysis. Journal of Agricultural and Food Chemistry, Easton, 30(1), 1-9, 1982
Maldini, M., et al. (2014). “Moringa oleifera: estudo de fenólicos e glucosinolatos por espectrometria de massa.” Jornal de Espectrometria de Massa, 49(9), 900–910. 10.1002/jms.3437
Mantoani, A. C; Pessato, T. B; & Tavano, O. L. (2013). Baixa digestibilidade proteica e presença de antinutricionais em produtos tipo mix de cereais. Nutrire Rev. Soc. Bras. Aliment. Nutr, p. 245-255
Marco, A; Navarro, J. L; & Flores, M. (2006). The influence of nitrite and nitrate on microbial, chemical and sensory parameters of slow dry fermented sausage. Meat Science, 73(4), 660-673. 10.1016/j.meatsci.2006.03.011
Martínez-Castro, J. et al. (2023) Bioaccessibility of glucosinolates, isothiocyanates and inorganic micronutrients in cruciferous vegetables through INFOGEST static in vitro digestion model. Food Research International, 166, 2023, 9963-9969. 10.1016/j.foodres.2023.112598
Martins, A. F., et al. (2018) Soybean-derived carbohydrates differently influence insulin sensitivity and blood pressure via gut microbial-dependent and independent mechanisms. Journal of Functional Foods, 49, 189-197
Martins, Q.S. A. et al. (2019). Resíduos da indústria processadora de polpas de frutas: capacidade antioxidante e fatores antinutricionais. Revista em Agronegócio e Meio Ambiente, 12(2), 591-608
Mendes, K. D. S., Silveira, R. C. de C. P., & Galvão, C. M. (2008). Revisão integrativa: método de pesquisa para a incorporação de evidências na saúde e na enfermagem. Texto & Contexto - Enfermagem, 17(4), 758–764. https://doi.org/10.1590/S0104-07072008000400018
Mocniak, L E et al. (2023). Building comprehensive glucosinolate profiles for brassica varieties. Talanta , 251, 123814. 10.1016/j.talanta.2022.123814
Mohan, V.R; & Kalpanadevi, V. (2013). Effect of processing on antinutrients and in vitro protein digestibility of the underutilized legume, Vigna unguiculata (L.) Walp subsp. unguiculata. LWT-Food Science and Technology, 51(2), 455-461
Mohn, T. et al. (2007). .Extraction and analysis of intact glucosinolates — A validated pressurized liquid extraction/liquid chromatography–mass spectrometry protocol for Isatis tinctoria, and qualitative analysis of other cruciferous plants. Journal of Chromatography A , 1166(1-2), 142-151. 10.1016/j.chroma.2007.08.028
Mojica, L. et al. (2015). Bean cultivars (Phaseolus vulgaris L.) have similar high antioxidant capacity, in vitro inhibition of α-amilase and α-glucosidase while diverse phenolic composition and concentration. Food Research International, 69, 38-48
Mosayyebi, B. (2020). An update on the toxicity of cyanogenic glycosides bioactive compounds: Possible clinical application in targeted cancer therapy. Materials Chemistry and Physics, 246, 122841. 10.1016/j.matchemphys.2020.122841
Moses, T. (2014). Diversidade metabólica e funcional de saponinas, intermediários biossintéticos e derivados semissintéticos. Revisões críticas em bioquímica e biologia molecular, 49(6), 439-462
Munialo, C. D.; & Andrei, M. (2023). General health benefits and sensory perception of plant-based foods. In: Engineering plant-based food systems. Academic Press, 13-26
Muntean, D., et al. (2016). Nutritional and functional characteristics of pasta enriched with legume flours: a review. Food Chemistry, 196, 849-862
Muramoto, K. (2017). Lectins as Bioactive Proteins in Foods and Feeds. Food Science and Technology Research. 23, 4, 487-494. 10.3136/fstr.23.487
Nepal, B; & Stine, K. J. (2023). Atomic force microscopy study of the complexation of sterols and the glycoalkaloid α-tomatine in Langmuir-Blodgett monolayers. Chemistry and Physics of Lipids. 252, 105293. /10.1016/j.chemphyslip.2023.105293
Nepal, B; & Stine, K. J. (2019). Glycoalkaloids: structure, properties, and interactions with model membrane systems. Processes, 7(8), 513
Niklas, A. A. et al. (2023). Levels of nitrate, nitrite and nitrosamines in model sausages during heat treatment and in vitro digestion – The impact of adding nitrite and spinach (Spinacia oleracea L.). Food Research International, 166, 112595, 10.1016/j.foodres.2023.112595
Oliveira, L. C. et al. (1016). Avaliação da aplicabilidade de farinha de sabugo de milho no enriquecimento de produtos alimentícios. Nutrição Brasil, 15(1), 22-29. 10.33233/nb.v15i1.102
Oliveira, L. C. S; Kamonseki, D. H; & Rostelato-Ferreira, S. (2017). Determinação dos teores de ácido oxálico em diferentes amostras de tomate. Nutrivisa Revista de Nutrição e Vigilância em Saúde, 4(2), 61-65
Oliveira, L. G. et al. (2021). Efeitos dos inibidores de alfa-amilase e alfa-glicosidase no tratamento da obesidade: uma revisão integrativa. Brazilian Journal of Health Review, 4(6), 26125-26141
Pacheco, G, D. et al. (2012). Utilização do farelo de gérmen de milho desengordurado, como fonte de fitato, associado à fitase em rações de suínos: efeitos sobre a qualidade da carne e da linguiça tipo frescal. Semina: Ciências Agrárias. 819-828. 10.5433/1679-0359.2012v33n2p819
Paixão, G. A. da. (2022). Propriedades bioativas dos glucosinolatos presentes na Moringa oleifera: uma revisão de literatura. Trabalho de Conclusão de Curso (Bacharelado em Farmácia) - Instituto de Ciências Farmacêuticas, Universidade Federal de Alagoas
Pereira, J. A. R. et al. (2013). Studies of chemical and enzymatic characteristics of Yacon (Smallanthus sonchifolius) and its flours. Food Science and Technology, 33, 75-83
Pereira, S. D. et al. (2018). Protease inhibitors in leguminous seeds: potential use for human health. Functional Foods in Health and Disease, 8(5), 344-360
Piyaratne, M. K. D. K. et al. (2009). Effects of balancing rice bran based diets for up to four amino acids on growth performance of broilers. Tropical Agricultural Research & Extension 12, 2
Pinheiro, B; Gomes, C; & Baltazar, A. L. (2020). O fitato e a biodisponibilidade de ferro nas leguminosas. Acta Portuguesa de Nutrição, 22, 48-51. doi:10.21011/apn.2020.2209
Pinheiro, L. S. et al. (2021). Determinação do teor de oxalato em alimentos e a sua influência desse íon no organismo humano. Research, Society and Development, 10(15), e273101522622-e273101522622
Pinto, L. C. et al. (2012). Teor de fenólicos totais e atividade antioxidante das sementes da Carpotroche brasiliensis (Raddi). Revista de Ciências Médicas e Biológicas, 11(2), 170-176
Pomélie, D. L. et al. (2018). Oxidation and nitrosation of meat proteins under gastro-intestinal conditions: Consequences in terms of nutritional and health values of meat. Food Chemistry, 243, 295-304. 10.1016/j.foodchem.2017.09.135
Ram, S. et al. (2020). Anti-nutritional factors and bioavailability: approaches, challenges, and opportunities. Woodhead Publishing Series in Food Science, p. 101-128. 10.1016/B978-0-12-818444-8.00004-3
Ridout, C. L. et al. (1991) Quinoa saponins—analysis and preliminary investigations into the effects of reduction by processing. Journal of the Science of Food and Agriculture, 54(2), 165-176
Rivas, M. E., et al. (2013). Simultaneous quantification of raffinose and stachyose in foods by high-performance liquid chromatography with evaporative light scattering detection. Food Chemistry, 136(2), 1049-1053, 2013
Rocha, B. S. et al. (2014). A shortcut to wide-ranging biological actions of dietary polyphenols: modulation of the nitrate–nitrite–nitric oxide pathway in the gut. Food & function, 5(8), 1646-1652
Rodriguez-Díaz, J. C., et al. (2017). Optimization of the extraction of verbascose from soybean meals and analysis by HPLC-ELSD and HILIC-ELSD. Journal of Food Composition and Analysis, 59, 52-57
Rozan, M; Alamri, E; & Bayomy, H. (2022). Fermented Hass avocado kernel: Nutritional properties and use in the manufacture of biscuits. Saudi Journal of Biological Sciences, 29(6), 103295
Saa, R. W. et al. (2022). Effect of soaking, germination, and roasting on the proximate composition, antinutrient content, and some physicochemical properties of defatted Moringa oleifera seed flour. Journal of Food Processing and Preservation, 46(3), e16329. 10.1111/jfpp.16329.
Sahni, P; & Sharma, S. (2020). Influence of processing treatments on cooking quality, functional properties, antinutrients, bioactive potential and mineral profile of alfalfa. LWT, 132, 109890, 2020.
Santillo, A. et al. (2022). Feeding tannins to dairy cows in different seasons improves the oxidative status of blood plasma and the antioxidant capacity of cheese. Journal of Dairy Science, 105, 8609-8620. 10.3168/jds.2022-22256
Santos, C. M. (2021). Antinutrientes e atividade antioxidante da farinha de subprodutos do mamão. Boletim do Centro de Pesquisa de Processamento de Alimentos, 37(1),
Santos, M. A. T. (2006). Efeito do cozimento sobre alguns fatores antinutricionais em folhas de brócolis, couve-flor e couve. Ciência e Agrotecnologia, 30, 294-301
Sgarbieri, V. C. (1987). Alimentação e nutrição: fator de saúde e desenvolvimento. Almed, p.387
Shang, R. et al. (2016). The diversity of four anti-nutritional factors in common bean. Horticultural Plant Journal, 2(2), 97-104
Sheikh, M. A. et al. (2022). Synergistic effect of microwave heating and hydrothermal treatment on cyanogenic glycosides and bioactive compounds of plum (Prunus domestica L.) kernels: An analytical approach. Current Research in Food Science, 5, 65-72. doi:/10.1016/j.crfs.2021.12.007
Shukla, V. et al. (2023). Unveiling the intricacies of phytate antinutrients in millets and their therapeutic implications in breast cancer. Intelligent Pharmacy. doi:10.1016/j.ipha.2023.12.005
Silva, E. O. et al. (2013). Bioactive compounds and antinutritional factors in different bean cultivars (Phaseolus vulgaris L.). Food Science and Technology, 33(2), 298-303
Silva, M. R. et al. (2000). Fatores antinutricionais: inibidores de proteases e lectinas. Revista de Nutrição, 13(1), 3-9. doi:10.1590/S1415-52732000000100001
Silva, M. R; & Silva, M. A. A. P. (1999). Aspectos nutricionais de fitatos e taninos. Revista de Nutrição, 12(1), 21-32. doi:10.1590/S1415-52731999000100002.
Tajner-Czopek, A.; et al., (2008). Changes in glycoalkaloids content of potatoes destined for consumption. Food Chemistry, 106(2), 706-711
Tanwar, B. et al. (2018). Antinutritional factors and hypocholesterolemic effect of wild apricot kernel (Prunus armeniaca L.) as affected by detoxification. Food Funct, 9, 2121-2135. doi:10.1039/C8FO00044A
Tucci, S. A.; et al. (2010) The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: a review of current and emerging therapeutic agents. Diabetes, metabolic syndrome and obesity: targets and therapy, p. 125-143
Udomkun, P. et al. (2019). Promoting the use of locally produced crops in making cereal-legume-based composite flours: An assessment of nutrient, antinutrient, mineral molar ratios, and aflatoxin content. Food Chemistry, 286, p. 651-658. 10.1016/j.foodchem.2019.02.055.
Vasconcelos, I. M; & Oliveira, J. T. A. (2004). Antinutritional properties of plant lectins. Toxicon, 44, 385-403 https://doi.org/10.1016/j.toxicon.2004.05.005.
Veken, D. V. et al. (2023). Challenge tests reveal limited outgrowth of proteolytic Clostridium botulinum during the production of nitrate- and nitrite-free fermented sausages. Meat Science. 200, 109158. doi:10.1016/j.meatsci.2023.109158.
Vieira, M. A. et al. (2009). Análise de compostos fenólicos, metilxantinas, tanino e atividade antioxidante de resíduo do processamento da erva-mate: uma nova fonte potencial de antioxidantes. International Workshop–Advances In Cleaner Production. p. 1-11.
Vinarova, L. et al. (2015). Lowering of cholesterol bioaccessibility and serum concentrations by saponins: in vitro and in vivo studies. Food & function, 6(2), 501-512.
Volk, G. M., et al. (2002). The role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes leaves. Plant Biology, 4, 34-45.
Wafula, E. N. et al. (2022). Antinutrient to mineral molar ratios of raw common beans and their rapid prediction using near-infrared spectroscopy. Food Chemistry, 130773
Weilack, I. (2023). Grape-derived pectic polysaccharides alter the tannin and pigment composition of Cabernet Sauvignon red wines. Current Research in Food Science, 6, 100506. 10.1016/j.crfs.2023.100506
Wu, M. (2021). Melamine and oxalate co-exposure induces early kidney tubular injury through mitochondrial aberrations and oxidative stress. Ecotoxicology and Environmental Safety, 225, 112756. 10.1016/j.ecoenv.2021.112756
Yoo, H. D., et al. (2018). Effect of verbascose on insulin resistance and gut microbiota in high-fat diet-fed mice. Journal of Agricultural and Food Chemistry, 66(30), 8033-804
Yong, S. X. M.; Song, C. P.; & Choo, W. S. (2021). Impact of high-pressure homogenization on the extractability and stability of phytochemicals. Frontiers in Sustainable Food Systems, 4, 593259
Yu, B.; Patterson, N.; & Zaharia, L. (2022). Saponin Biosynthesis in Pulses. Plants (Basel).11(24):3505. 10.3390/plants11243505
Yue, L. et al. (2023). 1-Methylcyclopropene promotes glucosinolate biosynthesis through BrWRKY12 mediated jasmonic acid biosynthesis in postharvest flowering Chinese cabbage. Postharvest Biology and Technology, 203, 112415. 10.1016/j.postharvbio.2023.112415
Zhang, N. et al. (2019). Changes of amygdalin and volatile components of apricot kernels during the ultrasonically-accelerated debitterizing. Ultrasonics Sonochemistry, 58, 104614, 10.1016/j.ultsonch.2019.104614
Zhong, Y. et al. (2021). Effect of ultrasonic pretreatment on eliminating cyanogenic glycosides and hydrogen cyanide in cassava. Ultrasonics Sonochemistry, 78, 105742. doi:10.1016/j.ultsonch.2021.105742
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Araceles Barbosa Oliveira; Eduardo Bruno Macêdo Viana; Jéssica Souza Ribeiro; Cassiara Camelo Eloi de Souza; Marcia Elena Zanuto
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.