Concentration in food and biological action of antinutritional compounds: A review

Authors

DOI:

https://doi.org/10.33448/rsd-v13i4.45497

Keywords:

Food science; Food composition; Revision.

Abstract

Antinutritional compounds are produced by the secondary metabolism of plants and have several functions, including protecting against predator attacks. These substances can reduce the bioavailability of nutrients, affect the digestibility of proteins, as well as cause toxic effects to the body when consumed in excess. However, in addition to harmful effects, some of these phytochemicals may also have beneficial effects on human health. This review aims to present data on the presence and content of antinutrients in vegetables and also report functional effects of some of these compounds. The present work is an integrative review, in which a search was carried out in the electronic databases Science Direct, Google Scholar and the Integrated Search Portal of the University of São Paulo, bringing together articles that addressed the concentration of antinutritional compounds in plant foods. used in human nutrition. The most abundant antinutrients in the foods evaluated were phytates, followed by tannins, oxalates, saponins, protease inhibitors (including trypsin inhibitors), nitrates, cyanogenic glycosides, non-digestible carbohydrates (raffinose, stachyose and verbascose) and glucosinolates. This review presented important data on the presence and content of antinutritional compounds in fresh and processed vegetables, highlighting the occurrence of phytates, tannins and oxalates. Research has shown harmful effects and also beneficial actions of the compounds, however, the potential of these molecules still needs to be investigated to elucidate their beneficial effects on human health and their applications.

References

Adebiyi, J. A., Njobeh, P. B., & Kayitesi, E. (2019). Assessment of nutritional and phytochemical quality of Dawadawa (an African fermented condiment) produced from Bambara groundnut (Vigna subterranea). Microchemical Journal, 149, 104034. 10.1016/j.microc.2019.104034

Adeyemo, S. M., & Oniluode, A. A. (2013). Enzymatic reduction of anti-nutritional factors in fermenting soybeans by Lactobacillus plantarum isolates from fermenting cereals. Nigerian Food Journal, 31(2), 84-90.

Agarwal, R., et al. (2014). Non-digestible oligosaccharides and their role in diabetes. Current Diabetes Reviews, 10(5), 322-332. 10.2174/156890141005140828

Alves, V. M., et al. (2020). Gabiroba e Murici: Estudo do valor nutricional e antinutricional da casca, polpa e semente. Research, Society and Development, 9(5), e152953260. 10.3399/rsd.v9i5.p.e152953260

Araújo, S. D. S., Araújo, P. D. S., Giunco, A. J., Silva, S. M., & Argandaña, E. J. S. (2019). Bromatology, food chemistry and antioxidant activity of Xanthosoma sagittifolium (L.) Schott. Emirates Journal of Food and Agriculture, 31(3), 188-195. 10.9755/ejfa.2019.v31.i3.1924

Arise, A. K., et al. (2022). Influence of processing methods on the antinutrients, morphology and in-vitro protein digestibility of jack bean. Food Chemistry Advances, 1, 100078. 10.1016/j.focha.2022.100078

Astley, S., & Paul, F. (2016). Nutrition and health. In Reference Module in Food Science (pp. 341-352). Elsevier. 10.1016/B978-0-08-100596-5.03425-9

Atuna, R. A., et al. (2022). Traditional processing methods reduced phytate in cereal flour, improved nutritional, functional and rheological properties. Scientific African, 15, e01063. 10.1016/j.sciaf.2021.e01063

Barroso, L. S., et al. (2013). A Influência dos Processos Térmicos na Atividade das Lectinas de Ervilha e de Lentilha. Salão de Ensino - UFRGS, 9.

Berardo, A., et al. (2016). Effect of sodium ascorbate and sodium nitrite on protein and lipid oxidation in dry fermented sausages. Meat Science, 121, 359-364. 10.1016/j.meatsci.2016.07.003

Battelli, M., et al. (2024). Condensed tannins fed to dairy goats: effects on digestibility, milk production, blood parameters, methane emission, and energy and nitrogen balances. Journal of Dairy Science. 10.3168/jds.2023-24076

Benevides, C., et al. (2017). Processing Effect Assessment in Contents Phenolic Total and Antioxidant Capacity of the Bean Mangalô (Lablab Purpureus (L.) Sweet) and Bean Guandu (Cajanus Cajan (L.) Mill Sp). Revista Virtual de Química, 9(2), 827-837. 10.21577/1984-6835.20170051

Benevides, C. M. J., et al. (2011). Fatores antinutricionais em alimentos: revisão [Antinutritional factors in food: a review]. Segurança Alimentar e Nutricional, 18(2), 67-79.

Bento, J. A. C., et al. (2021). Chemical profile of colorful bean (Phaseolus vulgaris L) flours: Changes influenced by the cooking method. Food chemistry, 356, 129718.

Bergamin, G. T., et al. (2013). Extração de antinutrientes e aumento da qualidade nutricional dos farelos de girassol, canola e soja para alimentação de peixes. Ciência Rural, 43(10), 1878-1884. 10.1590/S0103-847

Boakye, P. G., et al. (2023). Reduction of FODMAPs and amylase-trypsin inhibitors in wheat: A review. Food Hydrocolloids for Health, 3, 100117. 10.1016/j.fhfh.2023.100117

Bolarinwa, I. F., Orfila, C., & Morgan, M. R. A. (2014). Amygdalin content of seeds, kernels and food products commercially-available in the UK. Food Chemistry, 152, 133-139. 10.1016/j.foodchem.2013.11.002

Borges, M. H., et al. (2020). Inibidores enzimáticos de amilases: ocorrência, atividade biológica e potenciais aplicações em alimentos. Brazilian Journal of Food Technology, 23.

Brigidé, P., et al. (2019). Fe and Zn in vitro bioavailability in relation to antinutritional factors in biofortified beans subjected to different processes. Food Function, 10(8), 4802-4810. 10.1039/C9FO00199A

Bushway, R. J., & Ponnampalam, R. (1981). alpha-chaconine and alpha-solanine content of potato products and their stability during several modes of cooking. Journal of Agricultural and Food Chemistry, 29(4), 814-817

Calvo, M. S., & Uribarri, J. (2021). Perspective: Plant-based Whole-Grain Foods for Chronic Kidney Disease: The Phytate-Phosphorus Conundrum. Advances in Nutrition, 12(6), 2056-2067. 10.1093/advances/nmab066

Carvalho, N. L., & Zabot, V. (2012). Nitrogênio: nutriente ou poluente? Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, 6, 960-974. 10.5902/223611704671

Carvalho, M. A., et al. (2015). Simultaneous saccharification and fermentation of soybean meal: assessing the impacts of raffinose and stachyose. Food Chemistry, 166, 363-370

Cecarini, V. (2022). Targeting Proteolysis with Cyanogenic Glycoside Amygdalin Induces Apoptosis in Breast Cancer Cells. Molecules, 27(21), 7591. 10.3390/molecules27217591

Chang, M. J., et al. (1994). Cowpeas tannins related to cultivar, maturity, dehulling and heating. Journal of Food Science, 59(5), 1034-1036

Chaturvedi, S., Chakraborty, S., et al. (2022). Optimization of extraction process for legume-based synbiotic beverages, followed by their characterization and impact on antinutrients. International Journal of Gastronomy and Food Science, 28, 100506. 10.1016/j.ijgfs.2022.100506

Coscueta, E. R., et al. (2023). Production of soy protein concentrate with the recovery of bioactive compounds: From destruction to valorization. Food Hydrocolloids, 137, 108314. 10.1016/j.foodhyd.2022.108314

Damiani, C., et al. (2013). Perfil de ácidos graxos e fatores antinutricionais de amêndoas de pequi crua e torrada. Pesquisa Agropecuária Tropical, 43, 71-78

Das, G., Sharma, A., & Sarkar, P. K. (2022). Conventional and emerging processing techniques for the post-harvest reduction of antinutrients in edible legumes. Applied Food Research, 2(1), 100112. 10.1016/j.afres.2022.100112

Ding, X., et al. (2013). Purification, antitumor activity in vitro of steroidal glycoalkaloids from black nightshade (Solanum nigrum L.). Food Chemistry, 141(2), 1181-1186. 10.1016/j.foodchem.2013.03.062

Diniz, M. F. F. M., et al. (2017). Plant protease inhibitors: an overview of their potential role in combating inflammatory and autoimmune diseases. International Journal of Biological Macromolecules, 97, 28-37. 10.1016/j.ijbiomac.2017.01.022

Domene, S. M. A., Pereira, T. C., & Arrivillaga, R. K. (2008). Estimativa da disponibilidade de zinco em refeições com preparações padronizadas da alimentação escolar do município de Campinas. Rev Nutr, 21(2), 161-167

Dong, Q., & Tu, K. (2006). Progresso da pesquisa sobre o mecanismo bacteriostático do nitrito em carne conservada. J Progress in Modern Biomedicine, 2(3), 48-52

Farady, C. J., et al. (2008). Structure of an Fab–protease complex reveals a highly specific non-canonical mechanism of inhibition. Journal of molecular biology, 380(2), 351-360. 10.1016/j.jmb.2008.03.042

Faria-Silva, C., et al. (2022). Alpha-tomatine and the two sides of the same coin: An anti-nutritional glycoalkaloid with potential in human health. Food Chemistry, 391, 133261. 10.1016/j.foodchem.2022.133261

Fernandes, A. C., & Proença, R. P. C. (2011). Técnicas recomendadas para pré-preparo de feijão: remolho e descarte de água. Nutrição em Pauta, 19(111), 50-5

Ferreira, P. M. P., et al. (2008). Moringa oleifera: bioactive compounds and nutritional potential. Revista de Nutrição, 21, 431-437

Fleck, J. D., et al. (2019). Saponins from Quillaja saponaria and Quillaja brasiliensis: particular chemical characteristics and biological activities. Molecules, 24(1), 171

Furtunato, D. M. N., Trigueiro, I. N. S., & Góes, J. Â. W. (2003). Fitatos na alimentação humana: uma visão abrangente. Higiene Alimentar, 17(107), 16-20

Garcia-Almendarez, B. E., et al. (2019). Thermal processing and nutritional quality of legumes. Journal of Food Science and Technology, 56(7), 3083-3091

Gibson, R. S., Bailey, K. B., Gibbs, M., & Ferguson, E. L. (2010). Uma revisão das concentrações de fitato, ferro, zinco e cálcio em alimentos complementares à base de plantas usados em países de baixa renda e implicações para a biodisponibilidade. Food and Nutrition Bulletin, 31, 134-146

Gitanjali, J. (2023). Antimicrobial, antioxidant, anticancer, and antithrombotic competency of saponins from the root of Decalepis hamiltonii. Environmental Research, 231(1), 116096. https://doi.org/10.1016/j.envres.2023.116096

Gleadow, R. M., & Møller, B. L. (2014). Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. Annual Review of Plant Biology, 65, 155-185. 10.1146/annurev-arplant-050213-040027

Gomes, F. A. et al. (2012). Aspectos nutritivos de feijões crioulos cultivados no Vale do Juruá, Acre, Brasil. Enciclopédia Biosfera, 8(14)

Gomezulu, A. D., & Mongi, R. J. (2022). Protein content and anti-nutritional factors in pigeon pea and effect of its protein isolate on physical properties and consumer preference of beef sausages. Applied Food Research, 2(1), 100047

Goudar, G. et al. (2023). Phenolic, nutritional and molecular interaction study among different millet varieties. Food Chemistry Advances, 2, 10015

Guéraud, F. (2015). Dietary polyunsaturated fatty acids and heme iron induce oxidative stress biomarkers and a cancer promoting environment in the colon of rats. Free Radical Biology and Medicine, 83, 192-200. 10.1016/j.freeradbiomed.2015.02.023

Gul, Z. et al. (2023). Phytonutrient and antinutrient components profiling of Berberis baluchistanica Ahrendt bark and leaves. Journal of King Saud University - Science, 35(2), 102517. 10.1016/j.jksus.2022.102517

Gunawan, S. et al. (2022). Effect of process production on antinutritional, nutrition, and physicochemical properties of modified sorghum flour. Arabian Journal of Chemistry, 15(10), 104134. 10.1016/j.arabjc.2022.104134

Habermeyer, M. et al. (2015). Nitrate and nitrite in the diet: how to assess their benefit and risk for human health. Molecular Nutrition & Food Research, 59(1), 106-128

Hamad, S. A. A. et al. (2019). Nutritional quality of raw and cooked flours of a high β-glucan sorghum inbred line. Journal of Cereal Science, 90, 102857

Higashijima, N. S., Lucca, A., Rebizzi, L. R. H., & Rebizzi, L. M. H. (2020). Fatores antinutricionais na alimentação humana. Segurança Alimentar e Nutricional, 27, 1-16

Hospital, X. F. et al. (2016). A study on the toxigenesis by Clostridium botulinum in nitrate and nitrite-reduced dry fermented sausages. International Journal of Food Microbiology, 218, 66-70. 10.1016/j.ijfoodmicro.2015.11.009

Hosseini, M. et al. (2023). A worldwide systematic review, meta-analysis and meta-regression of nitrate and nitrite in vegetables and fruits. Ecotoxicology and Environmental Safety, 257, 114934. 10.1016/j.ecoenv.2023.114934

Huang, X. et al. (2023). Effects of fresh-cut and storage on glucosinolates profile using broccoli as a case study. Horticultural Plant Journal, 9(2), 285-292

Huynh, N. K. et al. (2022). Effects of processing on oxalate contents in plant foods: A review. Journal of Food Composition and Analysis, 112, 104685. 10.1016/j.jfca.2022.104685

Ijarotimi, O. S., Ogunjobi, O. G., & Oluwajuyitan, T. D. (2022). Gluten free and high protein-fiber wheat flour blends: Macro-micronutrient, dietary fiber, functional properties, and sensory attributes. Food Chemistry Advances, 1, 100134

International Agency for Research on Cancer. Working Group on the Evaluation of Carcinogenic Risks to Humans. (2018). Red meat and processed meat. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Lyon, France

Johnston, B. C. et al. (2019). Unprocessed red meat and processed meat consumption: Dietary guideline recommendations from the NutriRECS Consortium. Anais de Medicina Interna, 171(10), 756-764

Joubert, P. et al. (2016). Hypothesis: Phytate is an important unrecognized nutrient and potential intravenous drug for preventing vascular calcification. Medical Hypotheses, 94, 89-92. 10.1016/j.mehy.2016.07.005

Junior, E. N. M. et al. (2018). Caracterização Físico-Química e Determinação de Ácido Cianídrico em Folhas de Mandioca (Manihot esculenta Crantz). XXVI Congresso Brasileiro de Ciência dos Alimentos

Kang, P. et al. (2023). Effects of replacing fishmeal with rapeseed meal and dietary condensed tannins on antioxidant capacity, immunity, and hepatic and intestinal health of largemouth bass (Micropterus salmoides). Aquaculture Reports, 30, 101548. 10.1016/j.aqrep.2023.101548

Kasprchak, E. et al. (2020). Interactions of antinutrients mixtures with bovine serum albumin and its influence on in vitro protein digestibility. Journal of Molecular Liquids, 315, 113699. 10.1016/j.molliq.2020.113699

Keuleyan, E. et al. (2022). In vitro digestion of nitrite and nitrate preserved fermented sausages – New understandings of nitroso-compounds’ chemical reactivity in the digestive tract. Food Chemistry: X, 16, 100474. 10.1016/j.fochx.2022.100474

Kim, J. T. et al. (2015). Protease inhibitors from plants with antimicrobial activity. International Journal of Molecular Sciences, 16(5), 9650-9668

Kiewlicz, J. A., & Rybicka, I. (2020). Minerals and their bioavailability in relation to dietary fiber, phytates and tannins from gluten and gluten-free flakes. Food Chemistry, 305, 125452. 10.1016/j.foodchem.2019.125452

Kiranmayi, P. (2014). Is bioactive compounds in plants acts as anti nutritonal factors. International Journal of Current Pharmaceutical Research, 6(2), 36-38.

Kirkhus, B. et al. (2019). Increased release of carotenoids and delayed in vitro lipid digestion from high-pressure homogenized tomato and capsicum emulsions. Food Chemistry, 285, 282-289

Kruger, J. et al. (2015). Potential contribution of African green leafy vegetables and maize porridge composite meals to iron and zinc nutrition. Nutrition, 31(9), 1117-1123

Kumar, P. et al. (2022). Hydroxyproline stimulates inflammation and reprograms macrophage signaling in a rat kidney stone model. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1868(9), 166442. 10.1016/j.bbadis.2022.166442

Labba, I. M., Frøkiær, H., & Sandberg, A. (2021). Nutritional and antinutritional composition of fava bean (Vicia faba L., var. minor) cultivars. Food Research International, 140, 110038

Lagarda-Diaz, I. et al. (2017). Lectinas de leguminosas: proteínas com diversas aplicações. Journal of International Molecular Sciences, 18(6), 1242

Landim, L. A. S. R. et al. (2013). Conteúdo de fenólicos totais, antocianinas, taninos e atividade antioxidante de três cultivares de feijão-caupi. Embrapa Meio-Norte-Artigo em Anais de Congresso (ALICE)

Lanteri, M. L. et al. (2023). Metabolite profiling and cytotoxic activity of Andean potatoes: Polyamines and glycoalkaloids as potential anticancer agents in human neuroblastoma cells in vitro. Food Research International, 168, 112705. 10.1016/j.foodres.2023.112705

Lee, J. et al. (2013). Quantificação de amigdalina em amêndoas amargas, semiamargas e doces (Prunus dulcis) por UHPLC-(ESI)QqQ MS/MS. Journal of Agricultural and Food Chemistry, 61(32), 7754-7759. 10.1021/jf402295u

Lemos, L. C. S. Et al. (2019). Avaliação sensorial, microbiológica e dos compostos bioativos de biscoito tipo cookie desenvolvido com bagaço de cerveja e castanha de baru. Brazilian Journal of Development, 5(12), 31030-31041

Liener, I. E. (1994). Implications of antinutritional components in soybean foods. Critical Reviews in Food Science and Nutrition, 34(1), 31-67

Lima, V. C. O. et al. (2019). Trypsin inhibitors: promising candidate satietogenic proteins as complementary treatment for obesity and metabolic disorders?. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 405-419

Li, S. et al. (2007). Modification of Sugar Chains in Glycoalkaloids and Variation of Anticancer Activity. Chemical Research in Chinese Universities, 23(3), 303-309. 10.1016/S1005-9040(07)60065-8

Lopez-Moreno, M., Garces-Rimon, M., & Miguel, M. (2022). Antinutrients: Lectins, goitrogens, phytates and oxalates, friends or foe?. Journal of Functional Foods, 89, 104938

Lumen, B.O de; Salamat, L.A (1980). Trypsin inhibitor activity in winged bean (Psophocarpus tetragonolobus) and the possible role of tannin. Journal of Agricultural and Food Chemistry. Washington DC, 28(3), 533-536

Ma, T., Sun, Q., Ba, G.-N., Wu, X., Pei, X., Sun, C., Tan, S., & Wan, Z. (2023). Effects of low phytate soymilk intake on calcium, iron and zinc status in male Sprague-Dawley rats. Journal of Functional Foods, 106(105595), 105595. 10.1016/j.jff.2023.105595

Ma, Z., Boye, J I & Hu, X. (2018). Nutritional quality and techno-functional changes in raw, germinated and fermented yellow field pea (Pisum sativum L.) upon pasteurization. LWT, 92, 147-154

Machado, R. M. D & Toledo, M. C. F. (1004) Determinação de glicoalcalóides em batatas in natura (Solanum tuberosum L.) comercializadas na cidade de Campinas, Estado de São Paulo. Food Science and Technology, 24(1), 47-52. 10.1590/S0101-20612004000100010

Maga, J. A. (1982). Phytate: Its chemistry, ocurrence, food interactions, nutritional significance, and methods of analysis. Journal of Agricultural and Food Chemistry, Easton, 30(1), 1-9, 1982

Maldini, M., et al. (2014). “Moringa oleifera: estudo de fenólicos e glucosinolatos por espectrometria de massa.” Jornal de Espectrometria de Massa, 49(9), 900–910. 10.1002/jms.3437

Mantoani, A. C; Pessato, T. B; & Tavano, O. L. (2013). Baixa digestibilidade proteica e presença de antinutricionais em produtos tipo mix de cereais. Nutrire Rev. Soc. Bras. Aliment. Nutr, p. 245-255

Marco, A; Navarro, J. L; & Flores, M. (2006). The influence of nitrite and nitrate on microbial, chemical and sensory parameters of slow dry fermented sausage. Meat Science, 73(4), 660-673. 10.1016/j.meatsci.2006.03.011

Martínez-Castro, J. et al. (2023) Bioaccessibility of glucosinolates, isothiocyanates and inorganic micronutrients in cruciferous vegetables through INFOGEST static in vitro digestion model. Food Research International, 166, 2023, 9963-9969. 10.1016/j.foodres.2023.112598

Martins, A. F., et al. (2018) Soybean-derived carbohydrates differently influence insulin sensitivity and blood pressure via gut microbial-dependent and independent mechanisms. Journal of Functional Foods, 49, 189-197

Martins, Q.S. A. et al. (2019). Resíduos da indústria processadora de polpas de frutas: capacidade antioxidante e fatores antinutricionais. Revista em Agronegócio e Meio Ambiente, 12(2), 591-608

Mendes, K. D. S., Silveira, R. C. de C. P., & Galvão, C. M. (2008). Revisão integrativa: método de pesquisa para a incorporação de evidências na saúde e na enfermagem. Texto & Contexto - Enfermagem, 17(4), 758–764. https://doi.org/10.1590/S0104-07072008000400018

Mocniak, L E et al. (2023). Building comprehensive glucosinolate profiles for brassica varieties. Talanta , 251, 123814. 10.1016/j.talanta.2022.123814

Mohan, V.R; & Kalpanadevi, V. (2013). Effect of processing on antinutrients and in vitro protein digestibility of the underutilized legume, Vigna unguiculata (L.) Walp subsp. unguiculata. LWT-Food Science and Technology, 51(2), 455-461

Mohn, T. et al. (2007). .Extraction and analysis of intact glucosinolates — A validated pressurized liquid extraction/liquid chromatography–mass spectrometry protocol for Isatis tinctoria, and qualitative analysis of other cruciferous plants. Journal of Chromatography A , 1166(1-2), 142-151. 10.1016/j.chroma.2007.08.028

Mojica, L. et al. (2015). Bean cultivars (Phaseolus vulgaris L.) have similar high antioxidant capacity, in vitro inhibition of α-amilase and α-glucosidase while diverse phenolic composition and concentration. Food Research International, 69, 38-48

Mosayyebi, B. (2020). An update on the toxicity of cyanogenic glycosides bioactive compounds: Possible clinical application in targeted cancer therapy. Materials Chemistry and Physics, 246, 122841. 10.1016/j.matchemphys.2020.122841

Moses, T. (2014). Diversidade metabólica e funcional de saponinas, intermediários biossintéticos e derivados semissintéticos. Revisões críticas em bioquímica e biologia molecular, 49(6), 439-462

Munialo, C. D.; & Andrei, M. (2023). General health benefits and sensory perception of plant-based foods. In: Engineering plant-based food systems. Academic Press, 13-26

Muntean, D., et al. (2016). Nutritional and functional characteristics of pasta enriched with legume flours: a review. Food Chemistry, 196, 849-862

Muramoto, K. (2017). Lectins as Bioactive Proteins in Foods and Feeds. Food Science and Technology Research. 23, 4, 487-494. 10.3136/fstr.23.487

Nepal, B; & Stine, K. J. (2023). Atomic force microscopy study of the complexation of sterols and the glycoalkaloid α-tomatine in Langmuir-Blodgett monolayers. Chemistry and Physics of Lipids. 252, 105293. /10.1016/j.chemphyslip.2023.105293

Nepal, B; & Stine, K. J. (2019). Glycoalkaloids: structure, properties, and interactions with model membrane systems. Processes, 7(8), 513

Niklas, A. A. et al. (2023). Levels of nitrate, nitrite and nitrosamines in model sausages during heat treatment and in vitro digestion – The impact of adding nitrite and spinach (Spinacia oleracea L.). Food Research International, 166, 112595, 10.1016/j.foodres.2023.112595

Oliveira, L. C. et al. (1016). Avaliação da aplicabilidade de farinha de sabugo de milho no enriquecimento de produtos alimentícios. Nutrição Brasil, 15(1), 22-29. 10.33233/nb.v15i1.102

Oliveira, L. C. S; Kamonseki, D. H; & Rostelato-Ferreira, S. (2017). Determinação dos teores de ácido oxálico em diferentes amostras de tomate. Nutrivisa Revista de Nutrição e Vigilância em Saúde, 4(2), 61-65

Oliveira, L. G. et al. (2021). Efeitos dos inibidores de alfa-amilase e alfa-glicosidase no tratamento da obesidade: uma revisão integrativa. Brazilian Journal of Health Review, 4(6), 26125-26141

Pacheco, G, D. et al. (2012). Utilização do farelo de gérmen de milho desengordurado, como fonte de fitato, associado à fitase em rações de suínos: efeitos sobre a qualidade da carne e da linguiça tipo frescal. Semina: Ciências Agrárias. 819-828. 10.5433/1679-0359.2012v33n2p819

Paixão, G. A. da. (2022). Propriedades bioativas dos glucosinolatos presentes na Moringa oleifera: uma revisão de literatura. Trabalho de Conclusão de Curso (Bacharelado em Farmácia) - Instituto de Ciências Farmacêuticas, Universidade Federal de Alagoas

Pereira, J. A. R. et al. (2013). Studies of chemical and enzymatic characteristics of Yacon (Smallanthus sonchifolius) and its flours. Food Science and Technology, 33, 75-83

Pereira, S. D. et al. (2018). Protease inhibitors in leguminous seeds: potential use for human health. Functional Foods in Health and Disease, 8(5), 344-360

Piyaratne, M. K. D. K. et al. (2009). Effects of balancing rice bran based diets for up to four amino acids on growth performance of broilers. Tropical Agricultural Research & Extension 12, 2

Pinheiro, B; Gomes, C; & Baltazar, A. L. (2020). O fitato e a biodisponibilidade de ferro nas leguminosas. Acta Portuguesa de Nutrição, 22, 48-51. doi:10.21011/apn.2020.2209

Pinheiro, L. S. et al. (2021). Determinação do teor de oxalato em alimentos e a sua influência desse íon no organismo humano. Research, Society and Development, 10(15), e273101522622-e273101522622

Pinto, L. C. et al. (2012). Teor de fenólicos totais e atividade antioxidante das sementes da Carpotroche brasiliensis (Raddi). Revista de Ciências Médicas e Biológicas, 11(2), 170-176

Pomélie, D. L. et al. (2018). Oxidation and nitrosation of meat proteins under gastro-intestinal conditions: Consequences in terms of nutritional and health values of meat. Food Chemistry, 243, 295-304. 10.1016/j.foodchem.2017.09.135

Ram, S. et al. (2020). Anti-nutritional factors and bioavailability: approaches, challenges, and opportunities. Woodhead Publishing Series in Food Science, p. 101-128. 10.1016/B978-0-12-818444-8.00004-3

Ridout, C. L. et al. (1991) Quinoa saponins—analysis and preliminary investigations into the effects of reduction by processing. Journal of the Science of Food and Agriculture, 54(2), 165-176

Rivas, M. E., et al. (2013). Simultaneous quantification of raffinose and stachyose in foods by high-performance liquid chromatography with evaporative light scattering detection. Food Chemistry, 136(2), 1049-1053, 2013

Rocha, B. S. et al. (2014). A shortcut to wide-ranging biological actions of dietary polyphenols: modulation of the nitrate–nitrite–nitric oxide pathway in the gut. Food & function, 5(8), 1646-1652

Rodriguez-Díaz, J. C., et al. (2017). Optimization of the extraction of verbascose from soybean meals and analysis by HPLC-ELSD and HILIC-ELSD. Journal of Food Composition and Analysis, 59, 52-57

Rozan, M; Alamri, E; & Bayomy, H. (2022). Fermented Hass avocado kernel: Nutritional properties and use in the manufacture of biscuits. Saudi Journal of Biological Sciences, 29(6), 103295

Saa, R. W. et al. (2022). Effect of soaking, germination, and roasting on the proximate composition, antinutrient content, and some physicochemical properties of defatted Moringa oleifera seed flour. Journal of Food Processing and Preservation, 46(3), e16329. 10.1111/jfpp.16329.

Sahni, P; & Sharma, S. (2020). Influence of processing treatments on cooking quality, functional properties, antinutrients, bioactive potential and mineral profile of alfalfa. LWT, 132, 109890, 2020.

Santillo, A. et al. (2022). Feeding tannins to dairy cows in different seasons improves the oxidative status of blood plasma and the antioxidant capacity of cheese. Journal of Dairy Science, 105, 8609-8620. 10.3168/jds.2022-22256

Santos, C. M. (2021). Antinutrientes e atividade antioxidante da farinha de subprodutos do mamão. Boletim do Centro de Pesquisa de Processamento de Alimentos, 37(1),

Santos, M. A. T. (2006). Efeito do cozimento sobre alguns fatores antinutricionais em folhas de brócolis, couve-flor e couve. Ciência e Agrotecnologia, 30, 294-301

Sgarbieri, V. C. (1987). Alimentação e nutrição: fator de saúde e desenvolvimento. Almed, p.387

Shang, R. et al. (2016). The diversity of four anti-nutritional factors in common bean. Horticultural Plant Journal, 2(2), 97-104

Sheikh, M. A. et al. (2022). Synergistic effect of microwave heating and hydrothermal treatment on cyanogenic glycosides and bioactive compounds of plum (Prunus domestica L.) kernels: An analytical approach. Current Research in Food Science, 5, 65-72. doi:/10.1016/j.crfs.2021.12.007

Shukla, V. et al. (2023). Unveiling the intricacies of phytate antinutrients in millets and their therapeutic implications in breast cancer. Intelligent Pharmacy. doi:10.1016/j.ipha.2023.12.005

Silva, E. O. et al. (2013). Bioactive compounds and antinutritional factors in different bean cultivars (Phaseolus vulgaris L.). Food Science and Technology, 33(2), 298-303

Silva, M. R. et al. (2000). Fatores antinutricionais: inibidores de proteases e lectinas. Revista de Nutrição, 13(1), 3-9. doi:10.1590/S1415-52732000000100001

Silva, M. R; & Silva, M. A. A. P. (1999). Aspectos nutricionais de fitatos e taninos. Revista de Nutrição, 12(1), 21-32. doi:10.1590/S1415-52731999000100002.

Tajner-Czopek, A.; et al., (2008). Changes in glycoalkaloids content of potatoes destined for consumption. Food Chemistry, 106(2), 706-711

Tanwar, B. et al. (2018). Antinutritional factors and hypocholesterolemic effect of wild apricot kernel (Prunus armeniaca L.) as affected by detoxification. Food Funct, 9, 2121-2135. doi:10.1039/C8FO00044A

Tucci, S. A.; et al. (2010) The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: a review of current and emerging therapeutic agents. Diabetes, metabolic syndrome and obesity: targets and therapy, p. 125-143

Udomkun, P. et al. (2019). Promoting the use of locally produced crops in making cereal-legume-based composite flours: An assessment of nutrient, antinutrient, mineral molar ratios, and aflatoxin content. Food Chemistry, 286, p. 651-658. 10.1016/j.foodchem.2019.02.055.

Vasconcelos, I. M; & Oliveira, J. T. A. (2004). Antinutritional properties of plant lectins. Toxicon, 44, 385-403 https://doi.org/10.1016/j.toxicon.2004.05.005.

Veken, D. V. et al. (2023). Challenge tests reveal limited outgrowth of proteolytic Clostridium botulinum during the production of nitrate- and nitrite-free fermented sausages. Meat Science. 200, 109158. doi:10.1016/j.meatsci.2023.109158.

Vieira, M. A. et al. (2009). Análise de compostos fenólicos, metilxantinas, tanino e atividade antioxidante de resíduo do processamento da erva-mate: uma nova fonte potencial de antioxidantes. International Workshop–Advances In Cleaner Production. p. 1-11.

Vinarova, L. et al. (2015). Lowering of cholesterol bioaccessibility and serum concentrations by saponins: in vitro and in vivo studies. Food & function, 6(2), 501-512.

Volk, G. M., et al. (2002). The role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes leaves. Plant Biology, 4, 34-45.

Wafula, E. N. et al. (2022). Antinutrient to mineral molar ratios of raw common beans and their rapid prediction using near-infrared spectroscopy. Food Chemistry, 130773

Weilack, I. (2023). Grape-derived pectic polysaccharides alter the tannin and pigment composition of Cabernet Sauvignon red wines. Current Research in Food Science, 6, 100506. 10.1016/j.crfs.2023.100506

Wu, M. (2021). Melamine and oxalate co-exposure induces early kidney tubular injury through mitochondrial aberrations and oxidative stress. Ecotoxicology and Environmental Safety, 225, 112756. 10.1016/j.ecoenv.2021.112756

Yoo, H. D., et al. (2018). Effect of verbascose on insulin resistance and gut microbiota in high-fat diet-fed mice. Journal of Agricultural and Food Chemistry, 66(30), 8033-804

Yong, S. X. M.; Song, C. P.; & Choo, W. S. (2021). Impact of high-pressure homogenization on the extractability and stability of phytochemicals. Frontiers in Sustainable Food Systems, 4, 593259

Yu, B.; Patterson, N.; & Zaharia, L. (2022). Saponin Biosynthesis in Pulses. Plants (Basel).11(24):3505. 10.3390/plants11243505

Yue, L. et al. (2023). 1-Methylcyclopropene promotes glucosinolate biosynthesis through BrWRKY12 mediated jasmonic acid biosynthesis in postharvest flowering Chinese cabbage. Postharvest Biology and Technology, 203, 112415. 10.1016/j.postharvbio.2023.112415

Zhang, N. et al. (2019). Changes of amygdalin and volatile components of apricot kernels during the ultrasonically-accelerated debitterizing. Ultrasonics Sonochemistry, 58, 104614, 10.1016/j.ultsonch.2019.104614

Zhong, Y. et al. (2021). Effect of ultrasonic pretreatment on eliminating cyanogenic glycosides and hydrogen cyanide in cassava. Ultrasonics Sonochemistry, 78, 105742. doi:10.1016/j.ultsonch.2021.105742

Published

15/04/2024

How to Cite

OLIVEIRA, A. B. .; VIANA, E. B. M. .; RIBEIRO, J. S. .; SOUZA, C. C. E. de .; ZANUTO, M. E. Concentration in food and biological action of antinutritional compounds: A review. Research, Society and Development, [S. l.], v. 13, n. 4, p. e5213445497, 2024. DOI: 10.33448/rsd-v13i4.45497. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/45497. Acesso em: 21 nov. 2024.

Issue

Section

Review Article