Use of crushed eggshell to control tomato blossom-end rot

Authors

DOI:

https://doi.org/10.33448/rsd-v13i5.45667

Keywords:

Solanum lycopersicum; Apical rot of tomato; Solid waste; Calcium.

Abstract

Studies that attempt to control blossom-end rot in tomatoes using crushed eggshells as a source of calcium are rare. This study therefore aimed to control blossom-end rot in tomatoes with a solution obtained from eggshells. The eggshell used was dried, finely crushed and sieved in a 0.30 mm sieve. The treatments consisted of different concentrations of eggshell: 0.0, 0.6, 1.2, 2.4, 3.0, 6.0, 12.0, 24.0 and 40.0%. Each concentration of eggshell was diluted in boiling distilled water. After 24 h, the eggshell solutions were strained. In a preliminary assay, under laboratory conditions, the pH and electrical conductivity of these solutions were measured every 10 days for a maximum period of 30 days. The solutions were then sprayed on the aerial part, at 44 days after transplanting (DAT) of tomato plants, which had been arranged under field conditions, in pots of 22 kg of soil. The experiment was arranged in a randomized block design with four replications. At 84 DAT, growth and production indicators were evaluated. While the electrical conductivity of eggshell solutions increased with storage time, the pH values decreased. Tomato plants sprayed with the eggshell solution accumulated a lot of calcium in the aerial part and did not show blossom-end rot on their fruits. On the other hand, tomato plants sprayed with only distilled water showed the blossom-end rot in 15% of their fruits. Plants sprayed with eggshell solution showed even higher fruit fresh mass and higher branch dry mass. These results indicate that the eggshell solution inhibits the blossom-end rot in tomato.

References

Abdal, M., & Suleiman, M. (2005). Blossom end rot occurrence in calcareous soil of Kuwait. Acta Horticulturae, 63-66. https://doi.org/10.17660/ActaHortic.2005.695.5

Adams, P., & El-Gizawy, A. (1988). Effect of calcium stress on the calcium status of tomatoes grown in NFT. Acta Horticulturae, 222, 15-22. https://doi.org/10.17660/ActaHortic.1988.222.1

Araujo, S. M. S. d. O polo Gesseiro do Araripe: unidades geo-ambientais e impactos da mineração. [Tese (Doutorado em Ciências), Instituto de Geociencias - Universidade Estadual de Campinas], Campinas, SP, 2004.

Bangerth, F. (1976). A role for auxin and auxin transport inhibitors on the Ca content of artificially induced parthenocarpic fruits. Physiologia Plantarum, 37 (3), 191-194. https://doi.org/10.1111/j.1399-3054.1976.tb03956.x

Cavalcanti, F. J. d. A. Recomendações de adubação para o Estado de Pernambuco (Vol. 2). Empresa Pernambucana de Pesquisa Agropecuária-IPA, Recife-PE, 2008.

Clarkson, D. T. (1984). Calcium transport between tissues and its distribution in the plant. Plant, Cell & Environment, 7(6), 449-456. https://doi.org/https://doi.org/10.1111/j.1365-3040.1984.tb01435.x

CONAB. (2019). Tomate: Análise dos Indicadores da Produção e Comercialização no Mercado Mundial, Brasileiro e Catarinense. In. Brasília, Brasil: CONAB.

Damasceno, M. L. Análise da biomassa florestal do polo gesseiro da Região do Araripe–Pernambuco a partir de índices de vegetação. [Dissertação (Mestrado em Ciências Geodésicas e Tecnologias da Geoinformação), Departamento de Engenharia Cartográfica, Universidade Federal de Pernambuco - UFPE], Recife, PE, Brasil, 2020.

De Freitas, S. T., Jiang, C.-Z., & Mitcham, E. J. (2012). Mechanisms involved in calcium deficiency development in tomato fruit in response to gibberellins. Journal of Plant Growth Regulation, 31, 221-234. https://doi.org/https://doi.org/10.1007/s00344-011-9233-9

de Freitas, S. T., Shackel, K. A., & Mitcham, E. J. (2011). Abscisic acid triggers whole-plant and fruit-specific mechanisms to increase fruit calcium uptake and prevent blossom end rot development in tomato fruit. Journal of Experimental Botany, 62 (8), 2645-2656. https://doi.org/10.1093/jxb/erq430

De Kreij, C. (1996). Interactive effects of air humidity, calcium and phosphate on blossom‐end rot, leaf deformation, production and nutrient contents of tomato. Journal of plant nutrition, 19 (2), 361-377. https://doi.org/10.1080/01904169609365127

EMBRAPA. Sistema brasileiro de classificação de solos (5a ed.). Empresa Brasileira de Pesquisa Agropecuária, Brasília, DF, 2018.

FAO. (2023). Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#home

Ferreira, L. E., de Souza, E. P., & Chaves, A. F. (2012). Adubação verde e seu efeito sobre os atributos do solo. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 7 (1), 33-38. http://revista.gvaa.com.br

Filgueira, F. Novo manual de olericultura: agrotecnologia moderna na produção e comercialização de hortaliças (3 ed.). Editora UFV, Viçosa, MG, Brasil, 418p, 2013.

Floss, D. S., Levy, J. G., Lévesque-Tremblay, V., Pumplin, N., & Harrison, M. J. (2013). DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences, 110 (51), E5025-E5034. https://doi.org/10.1073/pnas.1308973110

Foo, E., Ross, J. J., Jones, W. T., & Reid, J. B. (2013). Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Annals of Botany, 111 (5), 769-779. https://doi.org/https://doi.org/10.1093/aob/mct041

Galvão, J. R., Casanova, S. R. A., de Souza, F. J. L., de Carvalho Santana, M. A., Pacheco, M. J. B., de Assis, L. F. C. T., & de Araújo, D. G. (2020). Utilização da casca de ovo como fonte de correção da acidez do solo. Nature and Conservation, 13 (2), 77-81. https://doi.org/10.6008/CBPC2318-2881.2020.002.0008

Gebbing, T., & Schnyder, H. (1999). Pre-Anthesis Reserve Utilization for Protein and Carbohydrate Synthesis in Grains of Wheat1. Plant physiology, 121 (3), 871-878. https://doi.org/10.1104/pp.121.3.871

Guichard, S., Gary, C., Leonardi, C., & Bertin, N. (2005). Analysis of growth and water relations of tomato fruits in relation to air vapor pressure deficit and plant fruit load. Journal of Plant Growth Regulation, 24, 201-213. https://doi.org/https://doi.org/10.1007/s00344-005-0040-z

Ho, L. (1998). Improving tomato fruit quality by cultivation. In K. E. Cockshull, D. Gray, G. B. Seymour, & B. Thomas (Eds.), Genetic and environmental manipulation of horticultural crops (pp. 17-29). CAB INTERNATIONAL.

Ho, L., Belda, R., Brown, M., Andrews, J., & Adams, P. (1993). Uptake and transport of calcium and the possible causes of blossom-end rot in tomato. Journal of Experimental Botany, 44 (2), 509-518. https://doi.org/https://doi.org/10.1093/jxb/44.2.509

Ho, L. C., & White, P. J. (2005). A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Annals of Botany, 95 (4), 571-581. https://doi.org/10.1093/aob/mci065

IBGE-SIDRA. (2021). Levantamento sistemático da produção agrícola. Instituto Brasileiro de Geografia e Estatística. https://sidra.ibge.gov.br/home/lspa/brasil

Lepsch, I. F. 19 lições de pedologia (2 ed.). Oficina de textos, São Paulo, SP, Brasil, 310p, 2021.

Liang, Q., Chen, L., Yang, X., Yang, H., Liu, S., Kou, K., & Yuan, Y. (2022). Natural variation of Dt2 determines branching in soybean. Nature Communications, 13 (1), 6429. https://doi.org/10.1038/s41467-022-34153-4

Lopes, D. I., Vergara, C., Araujo, K. E. C., & Saraiva, E. C. (2023). Uso da mucuna-preta e vermicomposto como adubo orgânico de alface em Moçambique. Research, Society and Development, 12 (2), e17512240017. https://doi.org/10.33448/rsd-v12i2.40017

Monaco, P. A. V. L., Júnior, G. R., Vieira, G. H. S., Meneghelli, C. M., & da Penha Simon, C. (2015). Conchas de ostras e cascas de ovos moídas como corretivos da acidez do solo. Revista Engenharia na Agricultura - REVENG, 23 (6), 584-590. https://doi.org/10.13083/1414-3984/reveng.v23n6p584-590

Muniz Júnior, J. C. Envolvimento das giberelinas nas respostas à deficiência de cálcio em plantas de tomateiro. [TCC apresentado à Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista - UNESP], Campus de Jaboticabal, para graduação em Agronomia, 2018.

Naika, S., Jeude, J., Goffau, M., Hilmi, M., & Dam, B. A cultura do tomate produção, processamento e comercialização. Fundação Agromisa e CTA, Wageningen, 2020. ISBN Agromisa: 90-8573-047-3 ISBN CTA: 92-9081-319.

Naves, M. M. V., Prado, C. M. M., Fernandes, D. C., & Serafini, Á. B. (2007). Avaliação microbiológica do pó da casca de ovo e otimização da técnica de elaboração do produto. Pesquisa Agropecuária Tropical, 37 (2), 113-118. https://revistas.ufg.br/pat/article/view/1836

Neves, M. A. d. Alternativas para a valorização da casca de ovo como complemento alimentar e em implantes ósseos. [Dissertação (Mestrado em Ciência dos Alimentos), Departamento de Ciência e Tecnologia de Alimentos - Universidade Federal de Santa Catarina], Florianópolis, Brasil, 1998.

Oliveira, D., Benelli, P., & Amante, E. (2009). Valorização de resíduos sólidos: casca de ovos como matéria-prima no desenvolvimento de novos produtos. 2nd International Workshop Advances in Cleaner Production, São Paulo, SP, Brasil.

Passam, H. C., Karapanos, I. C., Bebeli, P. J., & Savvas, D. (2007). A review of recent research on tomato nutrition, breeding and post-harvest technology with reference to fruit quality. The European Journal of Plant Science and Biotechnology, 1 (1), 1-21.

Pereira, A. S., Shitsuka, D., Parreira, F., & Shitsuka, R. Metodologia da pesquisa científica [recurso eletrônico] (1 ed.). UFSM, NTE, Santa Maria, RS, Brasil, 2018. 978-85-8341-204-5.

Pratella, G. (2003). Note di biopatologia e tecnica di conservazionetrasporto dei frutti: l’effetto del calcio in post-raccolta. Rivista di Frutticoltura, 6, 70-71.

Riboldi, L., Araújo, S., Freitas, S. d., & Castro, P. (2018). Blossom-end rot incidence in elongated tomato fruit. Botany, 96 (10), 663-673. https://doi.org/10.1139/cjb-2018-0021

Riboldi, L. B., Araújo, S. H. d. C., Freitas, S. T. d., & Castro, P. R. C. (2020). Fruit shape regulates susceptibility of tomato to blossom-end rot. Acta Scientiarum. Agronomy, 42, e42487. https://doi.org/https://doi.org/10.4025/actasciagron.v42i1.42487

Rivera, E. M., Araiza, M., Brostow, W., Castaño, V. M., Dı́az-Estrada, J. R., Hernández, R., & Rodrı́guez, J. R. (1999). Synthesis of hydroxyapatite from eggshells. Materials Letters, 41 (3), 128-134. https://doi.org/https://doi.org/10.1016/S0167-577X(99)00118-4

Sehgal, A., Sita, K., Siddique, K. H., Kumar, R., Bhogireddy, S., Varshney, R. K., . . . Nayyar, H. (2018). Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Frontiers in Plant Science, 9, 1705. https://doi.org/https://doi.org/10.3389/fpls.2018.01705

Silva, J., Dutra, A., Cavalcanti, N., Melo, A., Gonçalves, F., & Silva, J. (2014). Aspectos agronômicos do tomateiro “Caline Ipa 6” cultivado sob regimes hídricos em área do semiárido. Revista Agro@mbiente On-line, 8, 336-344. https://doi.org/10.5327/Z1942-847020140001951

Silveira, J. P. G., Amarante, C. V. T. d., Steffens, C. A., Miqueloto, A., & Katsurayama, J. M. (2012). A inibição na síntese de giberelina reduz o crescimento vegetativo em macieiras e proporciona controle de" bitter pit" nos frutos. Revista Brasileira de Fruticultura, 34 (2), 328-335. https://doi.org/https://doi.org/10.1590/S0100-29452012000200004

Team, R. C. (2023). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/

Tedesco, M. J. Extração simultânea de N, P, K, Ca, e Mg em tecido de plantas por disgestão com H2O2-H2SO4. . UFRGS, Porto Alegre, RS, Brasil, 23p, 1982.

Tixier, A., Gambetta, G. A., Godfrey, J., Orozco, J., & Zwieniecki, M. A. (2019). Non-structural carbohydrates in dormant woody perennials; the tale of winter survival and spring arrival. Frontiers in Forests and Global Change, 2, 2-18. https://doi.org/https://doi.org/10.3389/ffgc.2019.00018

Tonetto de Freitas, S., Padda, M., Wu, Q., Park, S., & Mitcham, E. J. (2011). Dynamic alternations in cellular and molecular components during blossom-end rot development in tomatoes expressing sCAX1, a constitutively active Ca2+/H+ antiporter from Arabidopsis. Plant physiology, 156 (2), 844-855. https://doi.org/10.1104/pp.111.175208

Vergara, C., Araujo, K. E. C., Souza, S. R. d., Schultz, N., Saggin, O. J., Sperandio, M. V. L., & Zilli, J. É. (2019). Plant-mycorrhizal fungi interaction and response to inoculation with different growth-promoting fungi. Pesquisa Agropecuária Brasileira, 54, e25140. https://doi.org/https://doi.org/10.1590/S1678-3921.pab2019.v54.25140

Vergara, C., Araujo, K. E. C., Sperandio, M. V. L., Santos, L. A., Urquiaga, S., & Zilli, J. É. (2019). Dark septate endophytic fungi increase the activity of proton pumps, efficiency of 15 N recovery from ammonium sulphate, N content, and micronutrient levels in rice plants. Brazilian Journal of Microbiology, 50, 825-838. https://doi.org/https://doi.org/10.1007/s42770-019-00092-4

Vergara, C., Araujo, K. E. C., Urquiaga, S., Santa-Catarina, C., Schultz, N., da Silva Araújo, E., & Zilli, J. É. (2018). Dark Septate Endophytic Fungi Increase Green Manure-(15)N Recovery Efficiency, N Contents, and Micronutrients in Rice Grains. Frontiers in Plant Science, 9, 613. https://doi.org/10.3389/fpls.2018.00613

Vergara, C., Araujo, K. E. C., Urquiaga, S., Schultz, N., Balieiro, F. d. C., Medeiros, P. S., & Zilli, J. E. (2017). Dark Septate Endophytic Fungi Help Tomato to Acquire Nutrients from Ground Plant Material [Original Research]. Frontiers in Microbiology, 8 (2437). https://doi.org/10.3389/fmicb.2017.02437

Vergara, C., Araujo, K. E. C., & Zilli, J. É. (2023). Physiological changes in tomato colonized by dark septate endophytic fungi. Research, Society and Development, 12 (4), e28712441188-e28712441188. https://doi.org/https://doi.org/10.33448/rsd-v12i4.41188

Verslues, P. E., & Zhu, J.-K. (2007). New developments in abscisic acid perception and metabolism. Current Opinion in Plant Biology, 10 (5), 447-452. https://doi.org/10.1016/j.pbi.2007.08.004

Vuerich, M., Braidotti, R., Sivilotti, P., Alberti, G., Casolo, V., Braidot, E., & Petrussa, E. (2021). Response of Merlot Grapevine to Drought Is Associated to Adjustments of Growth and Nonstructural Carbohydrates Allocation in above and Underground Organs. Water, 13 (17), 2336. https://doi.org/https://doi.org/10.3390/w13172336

Yu, N., Luo, D., Zhang, X., Liu, J., Wang, W., Jin, Y., & Yang, W. (2014). A DELLA protein complex controls the arbuscular mycorrhizal symbiosis in plants. Cell Research, 24 (1), 130-133. https://doi.org/10.1038/cr.2013.167

Published

07/05/2024

How to Cite

VERGARA, C. .; ARAUJO, K. E. C. .; SANTOS, A. P. .; OLIVEIRA, F. F. de; SILVA, G. de S.; MIRANDA, N. de O.; BARRETO, E. de S. .; SILVA, I. K. da .; MEDEIROS, J. F. de. Use of crushed eggshell to control tomato blossom-end rot. Research, Society and Development, [S. l.], v. 13, n. 5, p. e2213545667, 2024. DOI: 10.33448/rsd-v13i5.45667. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/45667. Acesso em: 29 jun. 2024.

Issue

Section

Agrarian and Biological Sciences