Effects of naringin/β-cyclodextrin complexed gel associated with therapeutic ultrasound on biomarkers of oxidative stress after musculoskeletal injury in rats

Authors

DOI:

https://doi.org/10.33448/rsd-v13i6.45940

Keywords:

Oxidative stress; Phonophoresis; Ultrasound therapy.

Abstract

Phonophoresis is presented as a strategy to increase the permeability of body tissues and consequently enhance the activity of the antioxidant defense system. In this perspective, this study aimed to verify the effects of the naringin/β-cyclodextrin complexed gel associated with therapeutic ultrasound on oxidative biomarkers after musculoskeletal injury in rats. This is a laboratory study with a quantitative approach. Adult male Wistar rats were equally distributed into five different groups (n=40): control, muscle injury, naringin/β-cyclodextrin complexed gel, therapeutic ultrasound, and therapeutic ultrasound associated with the naringin/β-cyclodextrin complexed gel. The gastrocnemius muscle was injured with mechanical impact. Treatment was applied at intervals of 2, 12, 24, 48, 72, and 96 hours after injury. Lipid peroxidation, superoxide dismutase activity, and catalase activity were evaluated. The UTP + NAR group showed a statistically significant reduction in MDA levels (1.16 ± 0.16 nmolMDA/mg protein vs 7.22 ± 0.42 nmolMDA/mg protein; p<0.05), SOD activity (0.04 ± 0.01 SOD/mg protein vs 0.79 ± 0.09 U/mg protein; p<0.05), and CAT activity (0.006 ± 0.001 CAT/mg protein vs 0.622 ± 0.032 U/mg protein; p<0.05) when compared to the untreated group. There was no statistically significant difference between the UTP + NAR and NAR groups in all variables analyzed. These results suggest that the use of the naringin/β-cyclodextrin complexed gel associated with therapeutic ultrasound after musculoskeletal injury is effective in attenuating lipid peroxidation and enhancing the antioxidant system.

References

Aebi H. (1984). Catalase in vitro. Methods Enzymol, 105,121–126.

Alam M A, Subhan N, Rahman M M, Uddin S J, Reza H M, & Sarker S D. (2014). Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv Nutr., 5(4), 404-17.

Bannister J V, & Calabrese L. (1987). Assays for superoxide dismutase. Methods Biochem Anal, 32,279–312.

Baoge L, VanDen Steen E, Rimbaut S, Philips N, Witvrouw E, Almqvist K F, Vanderstraeten G, & VandenBossche L C. (2012). Treatment of skeletal muscle injury, a Review. ISRN Orthop., 2012, 689-012.

Bharti S, Rani N, Krishnamurthy B, & Arya D S. (2014). Preclinical evidence for the pharmacological actions of naringin: a review. Planta Med, 80(06): 437-451.

Bianchetti P, Tassinary J F, & Stulp S. (2014). Effects of therapeutic ultrasound on the retention and maintenance of the antioxidant activity of the glycolic extract of Arnica montana: an in vitro study. Ciência e Natura, 36, 718-723.

Dalle-Donne I, Rossi R, Colombo R, Giustarini D, & Milzani A. (2006). Biomarkers of oxisative damage in human disease. Clinical Chemistry, 52:4 01-623.

Draper HH, Hadley M. (1990). Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol, 186:421–431.

Gangwar M, Gautan M K, Sharma A K, Tripathi Y B, Goel R K, & Nat G. (2014). Antioxidant Capacity and Radical Scavenging Effect of Polyphenol Rich Mallotus philippenensis Fruit Extract on Human Erythrocytes: An In Vitro Study. Scientific World Journal , 2014, 279-451.

Gottlieb O R, Borin M R M B, Pagotto C L A C, & Zocher D H T. (1998). Biodiversidade: o enfoque interdisciplinar brasileiro. Ciênc. saúde coletiva [online], 3, 97-102.

Grotto D, Santa Maria L, Valentini J, Paniz C, Schmitt G, & Garica S C. (2009). Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification. Quim. Nova, 32:169-174.

Gurney B, Wascher D, Schenck R, Tennison, & Jaramillo B. (2011). Absorption of Hydrocortisone Acetate in Human Connective Tissue Using Phonophoresis. Sports Health, 3(4), 346-51.

Jagetia G C, & Lalrinengi C. (2017). Naringin, a grape fruit bioflavonoid protects mice boné marrow cells against the doxorubicin-induced oxidative stress. SOJ Biochem, 3(1), 1-9.

Jorge L L, Feres C C, & Teles V E. (2010). Topical preparations for pain relief: efficacy and patient adherence. J Pain Res., 20(4), 11-24.

Kanth P L, & Elango V. (2015). Efficacy of phonophoresis therapy in plasma antioxidant status on freund’s adjuvant induced arthritic rats. The Pharma Innovation Journal., 4(10), 19-23.

Kim W J, Kang J Y, Kwon D K, Song Y J, & Lee K H. (2011). Effects of α-Lipoic Acid Supplementation on Malondialdehyde Contents and Superoxide Dismutase in Rat Skeletal Muscles. Food Science and Biotechnology, 20, 1133.

Kozakowska M, Pietraszek-Gremplewicz K, Jozkowicz A, & Dulak J. (2015). The role of oxidative stress in skeletal muscle injury and regeneration, focus on antioxidant enzymes. J Muscle Res Cell Motil, 36, 377–393.

Lee K R, B.A, Cronenwett J L, Shlafer M, Corpron C, & Zelenock G B. (1987). Effect of Superoxide Dismutase plus Catalase on Ca*+ Transport in lschemic and Reperfused Skeletal Muscle. Journal of Surgical Research, 42, 24-32.

Li G, Feng X, & Wang S. (2005). Effects of Cu/Zn Superoxide Dismutase on Strain InjuryInduced Oxidative Damage to Skeletal Muscle in Rats. Physiol. Res., 54, 193-199.

Luft N. (2003). Efeitos dos flavonoides naringina e rutina no metabolismo lipídico em cobaias e aves. [tese de pós graduação]. Disponível em: https://www.locus.ufv.br/bitstream/handle/123456789/8822/texto%20completo.pdf?sequence=1&isAllowed=y.

Montalti CS, Souza N V C K L, Rodrigues N C, Fernandes K R, Toma R L, & Renno A C M. (2013). Effects of low-intensity pulsed ultrasound on injured skeletal muscle. Braz J Phys Ther., 17(4), 343-350.

Powers S K, & Jackson M J. (2008). Exercise-Induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production. Physiol Rev., 88(4), 1243–1276.

Puntel GO. (2010). Efeitos da crioterapia em modelos de contusão e isquemia/reperfusão sanguínea em músculo de ratos. [tese de doutotado]. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/4423/PUNTEL%2C%20GUSTAVO%20ORIONE.pdf?sequence=1&isAllowed=y

Rajadurai M, & Prince PSM. (2007). Preventive effect of narigin on isoproterenol-induced cardiotoxicity in wistar rats: na in vivo and in vitro study. Toxicology, 232, 216-225.

Rahusen F T G, Weinhold P S, & Almekinders L C. (2004). Non steroidal antiinflammatory drugs and acetaminophen in the treatment of an acute muscle injury. Am J Sports Med., 32(8), 1856-9.

Rizzi C F, Mauriz J L, Corrêa D S F, Moreira A J, Zettler C G, Filippin L I, Marroni N P, & Gallego J G. (2006). Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kB signaling pathway in traumatized muscle. Lasers Surg Med, 38, 704–713.

Saliba S, Mistry D J, Perrin D H, Gieck J, & Weltman A. (2007). Phonophoresis and the absorption of dexamethasone in the presence of an occlusive dressing. J Athl Train, 42, 349–354.

Santana D V S, Trindade G G G, Menezes P P, Quintans-Júnior L J, & Araújo A A S. (2018). Investigação espectral e caracterização físico-química de complexos de inclusão de naringina em HP-β-CD.

Shu B, Yang Z, Li X, & Zhang L. (2012). Effect of Different Intensity Pulsed Ultrasound on the Restoration of Rat Skeletal Muscle Contusion. Cell Biochem Biophys, 62, 329–336.

Silveira P C L,Victor E G, Schefer D, Silva L A, Streck E L, Paula M M, & Pinho R A. (2010). Effects of therapeutic pulsed ultrasound and dimethylsulfoxide (DMSO) phonophoresis on parameters of oxidative stress in traumatized muscle. Ultrasound in Med. & Biol., 36, 44-50.

Silveira P C L, Victor E G, Notoya F S, Scheffer D L, Silva L, Cantu R B, Martinez V H C, Pinho R A, & Paula M M S. (2016). Effects of phonophoresis with gold nanoparticles on oxidative stress parameters in a traumatic muscle injury model. Drug Deliv., 23(3), 926-32.

Sousa Filho L F, Menezes P P, Santana D V S, Lima B S, Saravanan S, Almeida G K M, Menezes Filho J E, Santos M M B, Araújo A A S, & Oliveira E D. (2018). Effect of pulsed therapeutic ultrasound and diosmin on skeletal muscle oxidative parameters. Ultrasound in Med. & Biol., 44(2), 359–367.

Spiteller G. (2006). Peroxyl radicals, inductors of neurodegenerative and other Inflammatory diseases. Their origin and how they transform cholesterol, phospholipids, plasmalogens, polyunsaturated fatty acids, sugars, and proteins into deleterious products. Free Radic Biol Med., 41(3), 362-87.

Terahara T, Mitragotri S, Kost J, & Langer A. (2002). Dependence of low-frequency sonophoresis on ultrasound parameters; distance of the horn and intensity. International Journal of Pharmaceutics, 235, 35–42.

Treml J, & Smejkal K. (2016). Flavonoids as potent scavengers of hydroxyl radicals. Comprehensive Review sin Food Science and Food Safety, 15.

Wang L, Shan Y, Chen L, Lin B, Xiong X, Lin L, Jin L. (2016). Colchicine protects rat skeletal muscle from ischemia/reperfusion injury by suppressing oxidative stress and inflammation. Basic Med Sci, 19670-675.

Zama M M S, Ansari M M, Dimri U, Hoque M, Maiti S K, & Kinjavdekar P. (2013). Effect of therapeutic ultrasound and diathermy on oxidant–antioxidant balance in dogs suffering from hind quarter weakness. Journal of Applied Animal Research, 41(1), 82-86.

Oliveira, J. F., Costa, A. G. J., Costa, A. C. S. M., Santana, L. S., Sousa, D. S., & Aquino, M. J. das V. (2023). Scientific and technological prospection on the use of Cannabis sativa (Hemp) in neuropathic patients or with neuropsychiatric disorders. Research, Society and Development, 12(2), e5112236990. https://doi.org/10.33448/rsd-v12i2.36990

Sousa, D. S., Rodrigues, G. C., Gaspar, L. M. A. C., Machado, T. de O. X., Valverde, F. G., Padilha, F. F., & Droppa- Almeida, D. (2021). Scientific and technological prospection study on Myracrodruon urundeuva (aroeira do sertão) and bacterial resistance. Research, Society and Development, 10(11), e138101119505. https://doi.org/10.33448/rsd-v10i11.19505

Published

06/06/2024

How to Cite

SANTANA, C. B. L. .; SOUSA, D. S. .; COSTA, J. I. de G. .; LIMA, D. A. .; OLIVEIRA, E. D. de . Effects of naringin/β-cyclodextrin complexed gel associated with therapeutic ultrasound on biomarkers of oxidative stress after musculoskeletal injury in rats. Research, Society and Development, [S. l.], v. 13, n. 6, p. e0313645940, 2024. DOI: 10.33448/rsd-v13i6.45940. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/45940. Acesso em: 30 jun. 2024.

Issue

Section

Health Sciences