Defining geological viability criteria for CO2 and hydrogen storage in depleted oil and gas fields

Authors

DOI:

https://doi.org/10.33448/rsd-v13i8.46130

Keywords:

Hydrogen storage; CO2 storage; Depleted oil and gas fields; Geological storage; Geological reservoirs.

Abstract

This study focuses on how depleted oil and gas fields can be used as geological reservoirs to support the shift towards decarbonization and sustainable, low-carbon energy systems. These reservoirs, integral to CO2 and hydrogen storage, are pivotal in harmonizing the dual objectives of environmental conservation and energy transition. We delve into the characteristics of these depleted fields, evaluating their suitability for both CO2 and hydrogen storage, each serving distinct yet complementary decarbonization roles. CO2 storage, facilitated through carbon capture and storage (CCS) technology, aims to diminish atmospheric CO2 levels, thereby mitigating climate change. In parallel, hydrogen storage in these depleted fields emerges as a strategic solution for managing the intermittency of renewable energy sources like wind and solar power. Our study starts from the premise of using depleted oil and gas fields, assessing their potential and challenges for CO2 and hydrogen storage. We define essential criteria for evaluating the feasibility of depleted reservoirs, considering the distinct nature of CO2 and hydrogen. The literature review supported the analysis developed in this research, leading to the creation of three categories of criteria — structural and tectonic, storage and containment, and impact and reactivity — which provide a comprehensive framework for evaluating the viability of these reservoirs for both gases. Through this perspective, this research aims to systematically assess how specific factors such as porosity and permeability impact the efficacy of gas storage, thereby identifying essential parameters for optimizing storage solutions for either CO2 or hydrogen.

References

Al-Kindi, M. H., & Richard, P. D. (2014). The main structural styles of the hydrocarbon reservoirs in Oman. Geological Society, London, Special Publications, 392(1), 409–445. 10.1144/SP392.20

Al-Yaseri, A., Wolff-Boenisch, D., Fauziah, C. A., & Iglauer, S. (2021). Hydrogen wettability of clays: Implications for underground hydrogen storage. International Journal of Hydrogen Energy, 46(69), 34356–34361. 10.1016/j.ijhydene.2021.07.226

Amid, A., Mignard, D., & Wilkinson, M. (2016). Seasonal storage of hydrogen in a depleted natural gas reservoir. International Journal of Hydrogen Energy, 41(12), 5549–5558. 10.1016/j.ijhydene.2016.02.036

Anovitz, L. M., & Cole, D. R. (2015). Characterization and Analysis of Porosity and Pore Structures. Reviews in Mineralogy and Geochemistry, 80(1), 61–164. 10.2138/rmg.2015.80.04

Arnold, D., Demyanov, V., Rojas, T., & Christie, M. (2019). Uncertainty Quantification in Reservoir Prediction: Part 1—Model Realism in History Matching Using Geological Prior Definitions. Mathematical Geosciences, 51(2), 209–240. 10.1007/s11004-018-9774-6

Badawy, A. M., & Ganat, T. A. A. O. (2022a). Permeability (pp. 35–56). 10.1007/978-3-030-87462-9_5

Badawy, A. M., & Ganat, T. A. A. O. (2022b). Porosity (pp. 17–28). 10.1007/978-3-030-87462-9_3

Bagdassarov, N. (2021). Density and Porosity. In Fundamentals of Rock Physics (pp. 28–65). Cambridge University Press. 10.1017/9781108380713.003

Bashir, A., Ali, M., Patil, S., Aljawad, M. S., Mahmoud, M., Al-Shehri, D., Hoteit, H., & Kamal, M. S. (2024). Comprehensive review of CO2 geological storage: Exploring principles, mechanisms, and prospects. Earth-Science Reviews, 249, 104672. 10.1016/j.earscirev.2023.104672

Bui, M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., Fennell, P. S., Fuss, S., Galindo, A., Hackett, L. A., Hallett, J. P., Herzog, H. J., Jackson, G., Kemper, J., Krevor, S., Maitland, G. C., Matuszewski, M., Metcalfe, I. S., Petit, C., … Mac Dowell, N. (2018). Carbon capture and storage (CCS): the way forward. Energy & Environmental Science, 11(5), 1062–1176. 10.1039/C7EE02342A

Burtonshaw, J. E. J., Paluszny, A., Thomas, R. N., & Zimmerman, R. W. (2022, June 26). The Influence of Hydraulic Fluid Properties on Induced Seismicity During Underground Hydrogen Storage. All Days. 10.56952/ARMA-2022-0614

Cachola, C. da S., Ciotta, M., Azevedo dos Santos, A., & Peyerl, D. (2023). Deploying of the carbon capture technologies for CO2 emission mitigation in the industrial sectors. Carbon Capture Science & Technology, 7, 100102. 10.1016/j.ccst.2023.100102

Cao, C., Liu, H., Hou, Z., Mehmood, F., Liao, J., & Feng, W. (2020). A Review of CO2 Storage in View of Safety and Cost-Effectiveness. Energies, 13(3), 600. 10.3390/en13030600

Chabab, S., Théveneau, P., Coquelet, C., Corvisier, J., & Paricaud, P. (2020). Measurements and predictive models of high-pressure H2 solubility in brine (H2O+NaCl) for underground hydrogen storage application. International Journal of Hydrogen Energy, 45(56), 32206–32220. 10.1016/j.ijhydene.2020.08.192

Chalbaud, C., Robin, M., Lombard, J.-M., Martin, F., Egermann, P., & Bertin, H. (2009). Interfacial tension measurements and wettability evaluation for geological CO2 storage. Advances in Water Resources, 32(1), 98–109. 10.1016/j.advwatres.2008.10.012

Chang, Q., Dempsey, D., Zhang, L., Zhao, Y., & Huang, L. (2024). Molecular dynamics insights into gas-water interfacial tension: Optimizing hydrogen storage in subsurface conditions. International Journal of Hydrogen Energy, 64, 896–905. 10.1016/j.ijhydene.2024.03.341

Chen, M., Zhang, Y., Liu, S., Zhao, C., Dong, S., & Song, Y. (2023). CO2 transport and carbonate precipitation in the coupled diffusion-reaction process during CO2 storage. Fuel, 334, 126805. 10.1016/j.fuel.2022.126805

Cheng, Y., Liu, W., Xu, T., Zhang, Y., Zhang, X., Xing, Y., Feng, B., & Xia, Y. (2023). Seismicity induced by geological CO2 storage: A review. Earth-Science Reviews, 239, 104369. 10.1016/j.earscirev.2023.104369

Ding, S., Xi, Y., Jiang, H., & Liu, G. (2018). CO2 storage capacity estimation in oil reservoirs by solubility and mineral trapping. Applied Geochemistry, 89, 121–128. 10.1016/j.apgeochem.2017.12.002

Farokhpoor, R., Bjørkvik, B. J. A., Lindeberg, E., & Torsæter, O. (2013). Wettability behaviour of CO2 at storage conditions. International Journal of Greenhouse Gas Control, 12, 18–25. 10.1016/j.ijggc.2012.11.003

Fatah, A., Amao, A., Abu-Mahfouz, I. S., & Al-Yaseri, A. (2024). Geochemical Reactions of High Total Organic Carbon Oil Shale during CO 2 Treatment Relevant to Subsurface Carbon Storage. Energy & Fuels, 38(2), 1161–1172. 10.1021/acs.energyfuels.3c03958

Global CCS Institute. (2023). Global Status of CCS Report 2023. Retrieved from https://status23.globalccsinstitute.com/new-facilities/

Hassanpouryouzband, A., Joonaki, E., Edlmann, K., & Haszeldine, R. S. (2021). Offshore Geological Storage of Hydrogen: Is This Our Best Option to Achieve Net-Zero? ACS Energy Letters, 6(6), 2181–2186. 10.1021/acsenergylett.1c00845

Heinemann, N., Booth, M. G., Haszeldine, R. S., Wilkinson, M., Scafidi, J., & Edlmann, K. (2018). Hydrogen storage in porous geological formations – onshore play opportunities in the midland valley (Scotland, UK). International Journal of Hydrogen Energy, 43(45), 20861–20874. 10.1016/j.ijhydene.2018.09.149

Higgs, S., Da Wang, Y., Sun, C., Ennis-King, J., Jackson, S. J., Armstrong, R. T., & Mostaghimi, P. (2022). In-situ hydrogen wettability characterisation for underground hydrogen storage. International Journal of Hydrogen Energy, 47(26), 13062–13075. 10.1016/j.ijhydene.2022.02.022

Hu, Q., Wang, Q., Zhang, T., Zhao, C., Iltaf, K. H., Liu, S., & Fukatsu, Y. (2023). Petrophysical properties of representative geological rocks encountered in carbon storage and utilization. Energy Reports, 9, 3661–3682. 10.1016/j.egyr.2023.02.020

IEA. (2024). Energy Technology Perspectives, Scenarios and Strategies to 2050. Retrieved from https://www.iea.org/reports/energy-technology-perspectives-2020

Iordache, I., Schitea, D., Gheorghe, A. V., & Iordache, M. (2014). Hydrogen underground storage in Romania, potential directions of development, stakeholders and general aspects. International Journal of Hydrogen Energy, 39(21), 11071–11081. 10.1016/j.ijhydene.2014.05.067

Janjua, S. Y., & Khan, M. R. (2023). Environmental implications of offshore oil and gas decommissioning options: an eco-efficiency assessment approach. Environment, Development and Sustainability, 25(11), 12915–12944. 10.1007/s10668-022-02595-x

Jeon, J., & Kim, S. J. (2020). Recent Progress in Hydrogen Flammability Prediction for the Safe Energy Systems. Energies, 13(23), 6263. 10.3390/en13236263

Khudaida, K. J., & Das, D. B. (2020). A Numerical Analysis of the Effects of Supercritical CO2 Injection on CO2 Storage Capacities of Geological Formations. Clean Technologies, 2(3), 333–364. 10.3390/cleantechnol2030021

Li, Q., & Liu, G. (2016). Risk Assessment of the Geological Storage of CO2: A Review. In Geologic Carbon Sequestration (pp. 249–284). Cham: Springer International Publishing. 10.1007/978-3-319-27019-7_13

Liang, Y., Tsuji, S., Jia, J., Tsuji, T., & Matsuoka, T. (2017). Modeling CO 2 –Water–Mineral Wettability and Mineralization for Carbon Geosequestration. Accounts of Chemical Research, 50(7), 1530–1540. 10.1021/acs.accounts.7b00049

Liu, J., Wang, S., Javadpour, F., Feng, Q., & Cha, L. (2022). Hydrogen Diffusion in Clay Slit: Implications for the Geological Storage. Energy & Fuels, 36(14), 7651–7660. 10.1021/acs.energyfuels.2c01189

Liu, Q., Zhu, D., Jin, Z., Tian, H., Zhou, B., Jiang, P., Meng, Q., Wu, X., Xu, H., Hu, T., & Zhu, H. (2023). Carbon capture and storage for long-term and safe sealing with constrained natural CO2 analogs. Renewable and Sustainable Energy Reviews, 171, 113000. 10.1016/j.rser.2022.113000

Loria, P., & Bright, M. B. H. (2021). Lessons captured from 50 years of CCS projects. The Electricity Journal, 34(7), 106998. 10.1016/j.tej.2021.106998

Lysyy, M., Fernø, M., & Ersland, G. (2021). Seasonal hydrogen storage in a depleted oil and gas field. International Journal of Hydrogen Energy, 46(49), 25160–25174. 10.1016/j.ijhydene.2021.05.030

Matos, C. R., Carneiro, J. F., & Silva, P. P. (2019). Overview of Large-Scale Underground Energy Storage Technologies for Integration of Renewable Energies and Criteria for Reservoir Identification. Journal of Energy Storage, 21, 241–258. 10.1016/j.est.2018.11.023

Matter, J. M., Stute, M., Snæbjörnsdottir, S. Ó., Oelkers, E. H., Gislason, S. R., Aradottir, E. S., Sigfusson, B., Gunnarsson, I., Sigurdardottir, H., Gunnlaugsson, E., Axelsson, G., Alfredsson, H. A., Wolff-Boenisch, D., Mesfin, K., Taya, D. F. de la R., Hall, J., Dideriksen, K., & Broecker, W. S. (2016). Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science, 352(6291), 1312–1314. 10.1126/science.aad8132

Mendes, C. (2022). O que é uma revisão narrativa de literatura: exemplos e considerações da metodologia.

Metz, B., Davidson, O., de Coninck, H., Loos, M., & Meyer, L. (2005). IPCC Special Report on Carbon dioxide Capture and Storage.

Mito, S., & Xue, Z. (2011). Post-Injection monitoring of stored CO2 at the Nagaoka pilot site: 5 years time-lapse well logging results. Energy Procedia, 4, 3284–3289. 10.1016/j.egypro.2011.02.248

Muhammed, N. S., Haq, M. B., Al Shehri, D. A., Al-Ahmed, A., Rahman, M. M., Zaman, E., & Iglauer, S. (2023). Hydrogen storage in depleted gas reservoirs: A comprehensive review. Fuel, 337, 127032. 10.1016/j.fuel.2022.127032

Nielsen, L. C., Bourg, I. C., & Sposito, G. (2012). Predicting CO2–water interfacial tension under pressure and temperature conditions of geologic CO2 storage. Geochimica et Cosmochimica Acta, 81, 28–38. 10.1016/j.gca.2011.12.018

Olabi, A. G., Bahri, A. saleh, Abdelghafar, A. A., Baroutaji, A., Sayed, E. T., Alami, A. H., Rezk, H., & Abdelkareem, M. A. (2021). Large-vscale hydrogen production and storage technologies: Current status and future directions. International Journal of Hydrogen Energy, 46(45), 23498–23528. 10.1016/j.ijhydene.2020.10.110

Omrani, S., Ghasemi, M., Mahmoodpour, S., Shafiei, A., & Rostami, B. (2022). Insights from molecular dynamics on CO2 diffusion coefficient in saline water over a wide range of temperatures, pressures, and salinity: CO2 geological storage implications. Journal of Molecular Liquids, 345, 117868. 10.1016/j.molliq.2021.117868

Osman, A. I., Mehta, N., Elgarahy, A. M., Hefny, M., Al-Hinai, A., Al-Muhtaseb, A. H., & Rooney, D. W. (2022). Hydrogen production, storage, utilisation and environmental impacts: a review. Environmental Chemistry Letters, 20(1), 153–188. 10.1007/s10311-021-01322-8

Osmundsen, P., & Tveterås, R. (2003). Decommissioning of petroleum installations—major policy issues. Energy Policy, 31(15), 1579–1588. 10.1016/S0301-4215(02)00224-0

Pan, B., Yin, X., Ju, Y., & Iglauer, S. (2021). Underground hydrogen storage: Influencing parameters and future outlook. Advances in Colloid and Interface Science, 294, 102473. 10.1016/j.cis.2021.102473

Perera, M. S. A. (2023). A review of underground hydrogen storage in depleted gas reservoirs: Insights into various rock-fluid interaction mechanisms and their impact on the process integrity. Fuel, 334, 126677. 10.1016/j.fuel.2022.126677

Priolo, E., Romanelli, M., Plasencia Linares, M. P., Garbin, M., Peruzza, L., Romano, M. A., Marotta, P., Bernardi, P., Moratto, L., Zuliani, D., & Fabris, P. (2015). Seismic Monitoring of an Underground Natural Gas Storage Facility: The Collalto Seismic Network. Seismological Research Letters, 86(1), 109–123. 10.1785/0220140087

Safari, A., Zeng, L., Nguele, R., Sugai, Y., & Sarmadivaleh, M. (2022). Review on using the depleted gas reservoirs for the underground H2 storage: A case study in Niigata prefecture, Japan. International Journal of Hydrogen Energy. 10.1016/j.ijhydene.2022.12.108

Sapiie, B., Danio, H., Priyono, A., Asikin, A. R., Widarto, D. S., Widianto, E., & Tsuji, T. (2015). Geological characteristic and fault stability of the Gundih CCS pilot project at central Java, Indonesia. Proceedings of the 12th SEGJ International Symposium, Tokyo, Japan, 18-20 November 2015, 110–113. 10.1190/segj122015-029

Shukla, R., Ranjith, P., Haque, A., & Choi, X. (2010). A review of studies on CO2 sequestration and caprock integrity. Fuel, 89(10), 2651–2664. 10.1016/j.fuel.2010.05.012

Sorai, M., Lei, X., Nishi, Y., Ishido, T., & Nakao, S. (2022). CO2 Geological Storage. In Handbook of Climate Change Mitigation and Adaptation (pp. 1531–1584). Cham: Springer International Publishing. 10.1007/978-3-030-72579-2_85

SpringerMaterials. (2024a). Carbon Dioxide. Retrieved from https://materials.springer.com/substanceprofile/docs/smsid_opysrkklmfnjkqqv

SpringerMaterials. (2024b). Dihydrogen. Retrieved from https://materials.springer.com/substanceprofile/docs/smsid_izescefequkgdfgz

Stephenson, M. H., Ringrose, P., Geiger, S., Bridden, M., & Schofield, D. (2019). Geoscience and decarbonization: current status and future directions. Petroleum Geoscience, 25(4), 501–508. 10.1144/petgeo2019-084

Tajnik, T., Bogataj, L. K., Jurač, E., Lasnik, C. R., Likar, J., & Debelak, B. (2013). Investigation of adsorption properties of geological materials for CO 2 storage. International Journal of Energy Research, 37(8), 952–958. 10.1002/er.2901

Tarkowski, R. (2017). Perspectives of using the geological subsurface for hydrogen storage in Poland. International Journal of Hydrogen Energy, 42(1), 347–355. 10.1016/j.ijhydene.2016.10.136

Tarkowski, R. (2019). Underground hydrogen storage: Characteristics and prospects. Renewable and Sustainable Energy Reviews and Sustainable Energy Reviews, 105, 86–94.

Tarkowski, R., Uliasz-Misiak, B., & Tarkowski, P. (2021). Storage of hydrogen, natural gas, and carbon dioxide – Geological and legal conditions. International Journal of Hydrogen Energy, 46(38), 20010–20022. 10.1016/j.ijhydene.2021.03.131

Thomas, K. M. (2007). Hydrogen adsorption and storage on porous materials☆. Catalysis Today, 120(3-4), 389–398. 10.1016/j.cattod.2006.09.015

Tilford, N. R., Cannon, R. P., & Saleem, Z. A. (1983). Tectonic stability aspects of high-level radioactive waste repository siting and licensing. Waste Management Conference, 3.

Tomić, L., Karović-Maričić, V., Danilović, D., & Crnogorac, M. (2018). Criteria for CO2 storage in geological formations. Podzemni Radovi, 32. 10.5937/PodRad1832061T

Uliasz-Misiak, B., Lewandowska-Śmierzchalska, J., & Matuła, R. (2021). Selection of Underground Hydrogen Storage Risk Assessment Techniques. Energies, 14(23), 8049. 10.3390/en14238049

Vargaftik, N. B. (1975). Handbook of physical properties of liquids and gases - pure substances and mixtures.

Verga, F. (2018). What’s Conventional and What’s Special in a Reservoir Study for Underground Gas Storage. Energies, 11(5), 1245. 10.3390/en11051245

Wang, J., Samara, H., Ko, V., Rodgers, D., Ryan, D., & Jaeger, P. (2023). Analysis of the Impact of CO 2 Adsorption on Rock Wettability for Geological Storage of CO 2. Energy & Fuels, 37(18), 14046–14052. 10.1021/acs.energyfuels.3c00909

Wang, T., Yang, C., Ma, H., Daemen, J. J. K., & Wu, H. (2015). Safety evaluation of gas storage caverns located close to a tectonic fault. Journal of Natural Gas Science and Engineering, 23, 281–293. 10.1016/j.jngse.2015.02.005

Wei, B., Wang, B., Li, X., Aishan, M., & Ju, Y. (2023). CO2 storage in depleted oil and gas reservoirs: A review. Advances in Geo-Energy Research, 9(2), 76–93. 10.46690/ager.2023.08.02

Witkowski, A., Rusin, A., Majkut, M., & Stolecka, K. (2017). Comprehensive analysis of hydrogen compression and pipeline transportation from thermodynamics and safety aspects. Energy, 141, 2508–2518. 10.1016/j.energy.2017.05.141

Yang, F., Wang, T., Deng, X., Dang, J., Huang, Z., Hu, S., Li, Y., & Ouyang, M. (2021). Review on hydrogen safety issues: Incident statistics, hydrogen diffusion, and detonation process. International Journal of Hydrogen Energy, 46(61), 31467–31488. 10.1016/j.ijhydene.2021.07.005

Yang, N., Deng, J., Wang, C., Bai, Z., & Qu, J. (2024). High pressure hydrogen leakage diffusion: Research progress. International Journal of Hydrogen Energy, 50, 1029–1046. 10.1016/j.ijhydene.2023.08.221

Zhang, C., & Wang, M. (2023). CO2/brine interfacial tension for geological CO2 storage: A systematic review. Journal of Petroleum Science and Engineering, 220, 111154. 10.1016/j.petrol.2022.111154

Zhang, K., Jin, Z., Li, G., Liu, Q., & Tian, L. (2023). Gas adsorptions of geological carbon storage with enhanced gas recovery. Separation and Purification Technology, 311, 123260. 10.1016/j.seppur.2023.123260

Zhang, S., & DePaolo, D. J. (2017). Rates of CO 2 Mineralization in Geological Carbon Storage. Accounts of Chemical Research, 50(9), 2075–2084. 10.1021/acs.accounts.7b00334

Zhong, H., Wang, Z., Zhang, Y., Suo, S., Hong, Y., Wang, L., & Gan, Y. (2024). Gas storage in geological formations: A comparative review on carbon dioxide and hydrogen storage. Materials Today Sustainability, 100720. 10.1016/j.mtsust.2024.100720

Zhu, H., Ju, Y., Qi, Y., Huang, C., & Zhang, L. (2018). Impact of tectonism on pore type and pore structure evolution in organic-rich shale: Implications for gas storage and migration pathways in naturally deformed rocks. Fuel, 228, 272–289. 10.1016/j.fuel.2018.04.137

Downloads

Published

15/08/2024

How to Cite

CIOTTA, M.; TASSINARI, C. C. G. . Defining geological viability criteria for CO2 and hydrogen storage in depleted oil and gas fields. Research, Society and Development, [S. l.], v. 13, n. 8, p. e5513846130, 2024. DOI: 10.33448/rsd-v13i8.46130. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/46130. Acesso em: 6 sep. 2024.

Issue

Section

Exact and Earth Sciences