Scoping review of resin cements modified by antimicrobial agents: Effects of incorporation
DOI:
https://doi.org/10.33448/rsd-v13i6.46160Keywords:
Resin cements; Anti-infective agents; Biofilms.Abstract
The purpose of this scoping review was to assess the modification effects of resin cements on antimicrobial capacity, mechanical properties, and conversion degree. Researches in the Embase, PubMed, SCOPUS, Cochrane library and Web of Science databases were enriched with manual searches, between May and June 2020, using the keywords “antibacterial resin cement” NOT “adhesive” NOT “ionomer”. The criteria included articles written in English, in vitro studies assessing resin cements with the incorporation of antimicrobial agents, describing conversion degree and/or mechanical properties, and/or effect of the antimicrobial agents, and articles indexed in the Journal Citation Reports (JCR) database. A total of 100 articles were found, of which 11 were selected by title and/or abstract, according to the inclusion criteria. From the 7 articles selected for full reading, 3 articles remained in this scoping review. These had high variability in materials and methods, making it difficult to perform the data statistical analysis; thus, a descriptive analysis was performed. There is a need for a resinous adhesive cementing agent with antimicrobial action since the bacteria infiltration at the adhesive interface is directly related to secondary dental caries with reduced longevity and survival of prosthetic treatments.
References
Akaki, E., Mansur, H. S., Angelis, L. H., Castro, B. A., Valadão, H. F., Faria, D. B., & Rezende, F. C. (2005). SEM/EDX and FTIR characterization of a dental resin cement with antibacterial agents incorporated. Key Eng Mater, 284, 391-394. DOI: 10.4028/www.scientific.net/KEM.284-286.391.
Anusavice, K. J., Zhang, N. Z., & Shen, C. (2006). Controlled release of chlorhexidine from UDMA-TEGDMA resin. J Dent Res, 85, 950-954. DOI: 10.1177/154405910608501016.
Asmussen, E., & Peutzfeldt, A. (2003). Two-step curing: influence on conversion and softening of a dental polymer. Dent Mater, 19, 466-470. DOI: 10.1016/S0109-5641(02)00091-X.
Besegato, J. F., Jussiani, E. I., Andrello, A. C., Fernandes, R. V., Salomão, F. M., Vicentin, B. L. S., & Hoeppner, M. G. (2019). Effect of light-curing protocols on the mechanical behavior of bulk-fill resin composites. J Mech Behav Biomed Mater, 90, 381-387. DOI: 10.1016/j.jmbbm.2018.10.026.
Castro, D. T., Kreve, S., Oliveira, V. C., Alves, O. L., & Reis, A. C. (2019). Development of an Impression Material with Antimicrobial Properties for Dental Application. J Prosthodont, 1-7. DOI: 10.1111/jopr.13100.
Castro, D. T., Valente, M. L. C., Agnelli, J. A. M., da Silva, C. H. L., Watanabe, E., Siqueira, R. L., & Reis, A. C. (2016). In vitro study of the antibacterial properties and impact strength of dental acrylic resins modified with a nanomaterial. J Prosthet Dent, 115(2), 238-246. DOI: 10.1016/j.prosdent.2015.09.003.
Chan, D., Hu, W., Chung, K. H., Larsen, R., Jensen, S., Ca, D., & Eiampongpaiboon, T. (2018). Reactions: Antibacterial and bioactive dental restorative materials: Do they really work. Am J Dent, 31, 32B-36B.
Chen, L., Suh, B. I., & Yang, J. (2018). Antibacterial dental restorative materials: a review. Am J Dent, 31, 6B-12B.
Cheng, L., Zhang, K., Zhang, N., Melo, M. A. S., Weir, M. D., Zhou, X. D., & Xu, H. H. K. (2017). Developing a new generation of antimicrobial and bioactive dental resins. J Dent Res, 96(8), 855-863. DOI: 10.1177/0022034517709739.
Durner, J., Stojanovic, M., Urcan, E., Hickel, R., & Reichl, F. X. (2011). Influence of silver nano-particles on monomer elution from light-cured composites. Dent Mater, 27, 631-636. DOI: 10.1016/j.dental.2011.03.003.
Ersen, K. A., Gürbüz, Ö., & Özcan, M. (2019). Evaluation of polymerization shrinkage of bulk-fill resin composites using microcomputed tomography. Clin Oral, 1-7. DOI: 10.3390/polym12020332.
Hardy, C. M. F., Bebelman, S., Leloup, G., Hadis, M. A., Palin, W. M., & Leprince, J. G. (2018). Investigating the limits of resin-based luting composite photopolymerization through various thicknesses of indirect restorative materials. Dent Mater, 34(9), 1278-1288. DOI: 10.1016/j.dental.2018.05.009.
Hayashi, J., Espigares, J., Takagaki, T., Shimada, Y., Tagami, J., Numata, T., & Sadr, A. (2019). Real-time in-depth imaging of gap formation in bulk-fill resin composites. Dent Mater, 35(4), 585-596. DOI: 10.1016/j.dental.2019.01.020.
Hiraishi, N., Yiu, C. K. Y., King, N. M., & Tay, F. R. (2010). Chlorhexidine release and antibacterial properties of chlorhexidine-incorporated polymethyl methacrylate-based resin cement. J Biomed Mater Res Part B: Appl Biomater, 94(1), 134-140. DOI: 10.1002/jbm.b.31633.
Huang, Q., Huang, S., Liang, X., Qin, W., Liu, F., Lin, Z., & He, J. (2018). The antibacterial, cytotoxic, and flexural properties of a composite resin containing a quaternary ammonium monomer. J Prosthet Dent, 120(4), 609-616. DOI: 10.1016/j.prosdent.2017.12.017.
Imazato, S. (2003). Antibacterial properties of resin composites and dentin bonding systems. Dent Mater, 19(6), 449-457. DOI: 10.1016/S0109-5641(02)00102-1.
Imazato, S., Ma, S., Chen, J. H., & Xu, H. H. K. (2014). Therapeutic polymers for dental adhesives: Loading resins with bio-active components. Dent Mater, 30(1), 97-104. DOI: 10.1016/j.dental.2013.06.003.
Imazato, S., Torii, M., Tsuchitani, Y., McCabe, J. F., & Russell, R. R. (1994). Incorporation of bacterial inhibitor into resin composite. J Dent Res, 73, 1437-1443. DOI: 10.1177/00220345940730080701.
Kreve, S., Oliveira, V. C., Bachmann, L., Alves, O. L., & Reis, A. C. (2019). Influence of AgVO₃ incorporation on antimicrobial properties, hardness, roughness and adhesion of a soft denture liner. Sci Rep, 9(1), 1-9. DOI: 10.1038/s41598-019-48228-8.
Lempel, E., Őri, Z., Szalma, J., Lovász, B. V., Kiss, A., Tóth, Á., & Kunsági-Máté, S. (2019). Effect of exposure time and pre-heating on the conversion degree of conventional, bulk-fill, fiber reinforced and polyacid-modified resin composites. Dent Mater, 35(2), 217-228. DOI: 10.1016/j.dental.2018.11.017.
Liang, J., Li, M., Ren, B., Wu, T., Xu, H. H., Liu, Y., & Cheng, L. (2018). The anti-caries effects of dental adhesive resin influenced by the position of functional groups in quaternary ammonium monomers. Dent Mater, 34(3), 400-411. DOI: 10.1016/j.dental.2017.11.021.
Liberati, A., Altman, D. G., & Tetzlaff, J. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med, 6, 1-8. DOI: 10.1016/j.jclinepi.2009.06.006.
Liu, W., Meng, H., Sun, Z., Jiang, R., Dong, C. A., & Zhang, C. (2018). Phosphoric and carboxylic methacrylate esters as bonding agents in self-adhesive resin cements. Exp Ther Med, 15(5), 4531-4537. DOI: 10.3892/etm.2018.5937.
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol, 62, e1000097. DOI: 10.1371/journal.pmed.1000097.
Moldovan, M., Balazsi, R., Soanca, A., Roman, A., Sarosi, C., Prodan, D., & Cristescu, I. (2019). Evaluation of the degree of conversion, residual monomers and mechanical properties of some light-cured dental resin composites. Materials, 12(13), 2-14. DOI: 10.3390/ma12132109.
Nedeljkovic, I., Teughels, W., De Munck, J., Van Meerbeek, B., & Van Landuyt, K. L. (2015). Is secondary caries with composites a material-based problem? Dent Mater, 31(11), e247-e277. DOI: 10.1016/j.dental.2015.09.001.
Ogunyinka, A., Palin, W. M., Shortall, A. C., & Marquis, P. M. (2007). Photoinitiation chemistry affects light transmission and degree of conversion of curing experimental dental resin composites. Dent Mater, 23(7), 807-813. DOI: 10.1016/j.dental.2006.06.016.
Oguz Ahmet, S., Mutluay, M. M., Seyfioglu Polat, Z., Seseogullari Dirihan, R., Bek, B., & Tezvergil-Mutluay, A. (2014). Addition of benzalkonium chloride to self-adhesive resin-cements: some clinically relevant properties. Acta Biomater Odontol Scand, 72(8), 831-838. DOI: 10.3109/00016357.2014.913307.
Oguz, E. I., Hasanreisoglu, U., Uctasli, S., Özcan, M., & Kiyan, M. (2020). Effect of various polymerization protocols on the cytotoxicity of conventional and self-adhesive resin-based luting cements. Clin Oral Investig, 24(3), 1161-1170.
Sarkis-Onofre, R., Skupien, J. A., Cenci, M. S., Moraes, R. R., & Pereira-Cenci, T. (2014). The role of resin cement on bond strength of glass-fiber posts luted into root canals: a systematic review and meta-analysis of in vitro studies. Oper Dent, 39(1), E31-E44. DOI: 10.2341/13-070-LIT.
Shvero, D. K., Zatlsman, N., Hazan, R., Weiss, E. I., & Beyth, N. (2015). Characterisation of the antibacterial effect of polyethyleneimine nanoparticles in relation to particle distribution in resin composite. J Dent, 43, 287-294. DOI: 10.1016/j.jdent.2014.05.003.
Spazzin, A. O., Guarda, G. B., Oliveira-Ogliari, A., Leal, F. B., Correr-Sobrinho, L., & Moraes, R. R. (2016). Strengthening of Porcelain Provided by Resin Cements and Flowable Composites. Oper Dent, 41(2), 179-188. DOI: 10.2341/15-025-L.
Teixeira, A. B. V., Silva, C. C. H., Alves, O. L., & Reis, A. C. (2019). Endodontic sealers modified with silver vanadate: antibacterial, compositional, and setting time evaluation. Biomed Res Int, 2019, 1-9. DOI: 10.1155/2019/4676354.
Wang, Y., Costin, S., Zhang, J. F., Liao, S., Wen, Z. T., Lallier, T., & Xu, X. (2018). Synthesis, antibacterial activity, and biocompatibility of new antibacterial dental monomers. Am J Dent, 31(SP IS B), 17B-23B.
Zhang, J. F., Wu, R., Fan, Y., Liao, S., Wang, Y., Wen, Z. T., & Xu, X. (2014). Antibacterial dental composites with chlorhexidine and mesoporous silica. J Dent Res, 93, 1283-1289. DOI: 10.1177/0022034514555143.
Zhou, H., Liu, H., Weir, M. D., Reynolds, M. A., Zhang, K., & Xu, H. H. (2016). Three-dimensional biofilm properties on dental bonding agent with varying quaternary ammonium charge densities. J Dent, 53, 73-81. DOI: 10.1016/j.jdent.2016.07.014.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Simone Kreve; Izabela Ferreira; Andréa Cândido dos Reis
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.