Preliminary study of the efficiency of alkaline water electrolysis for hydrogen production using an ultrasonic electrode

Authors

DOI:

https://doi.org/10.33448/rsd-v13i7.46225

Keywords:

Galvanic cell; Overpotential; Benchtop prototype; Renewable energy; Ultrasonic cathode.

Abstract

This study presents research on increasing the efficiency of alkaline water electrolysis for green hydrogen production using ultrasonic electrodes. The aim of the work was to investigate the efficiency of alkaline water electrolysis using ultrasonic electrodes, focusing on green hydrogen production and environmental sustainability. The methodology involved the use of a stainless steel electrolytic cell, 316L stainless steel electrodes, and a 30% (w/w) KOH electrolyte solution. A 20W, 40kHz ultrasonic generator was used, applying ultrasound directly to the electrode. The hydrogen produced was collected through a water displacement system. The experimental design followed a full factorial design, with data analysis by analysis of variance (ANOVA) and mean comparison (Tukey). It was shown that the application of ultrasound directly to the electrode can significantly improve the efficiency of electrolysis, reducing overvoltage and resistances, and accelerating the formation of hydrogen microbubbles, resulting in up to a 28% increase in hydrogen production. The importance of optimizing parameters such as ultrasonic frequency and intensity and electrolyte concentration is highlighted, offering a promising approach to make green hydrogen production more viable and economical. It is suggested to explore different electrode materials and integrate this technology into renewable energy systems for future research.

References

Andrade, M. M. (2010). Introdução à metodologia do trabalho científico. (10a ed.), Atlas.

Ansari, S., Safaei-Farouji, M., Atashrouz, S., Abedi, A., Hemmati-Sarapardeh, A. & Mohaddespour, A. (2022). Prediction of hydrogen solubility in aqueous solutions: Comparison of equations of state and advanced machine learning-metaheuristic approaches. International Journal of Hydrogen Energy, 47(89), 37724-37741. https://doi.org/10.1016/j.ijhydene.2022.08.288.

Bousfield, W. R. & Lowry, T. M. (1905). The electrical conductivity and other properties of sodium hydroxide in aqueous solution as elucidating the mechanism of conduction. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, (204), 253-322. https://doi.org/10.1098/rsta.1905.0007.

Buelvas, W. L., Ávila, K. C. P. & Jiménez, A. R. (2014). Temperature as a factor determining on water electrolysis. International Journal of Engineering Trends and Technology, 7, 5-9.

Burton, N. A., Padilla, R. V., Rose, A. & Habibullah, H. (2021). Increasing the efficiency of hydrogen production from solar powered water electrolysis. Renewable and Sustainable Energy Reviews, 135, 110255-110275. https://doi.org/10.1016/j.rser.2020.110255.

Brauns, J. & Turek, T. (2020). Alkaline water electrolysis powered by renewable energy: A review. Processes, 8(2), 248.

https://doi.org/10.3390/pr8020248.

Callister, W. D. (2018). Ciência e engenharia de materiais: uma introdução. (9a ed.), LTC.

Çengel, Y. A. & Cimbala, J. M. (2012). Mecânica dos fluidos: fundamentos e aplicações. Porto Alegre: AMGH, ISBN 978.85.8055-066-5.

de Groot, M. T., Kraakman, J. & Barros, R. L. G. (2022). Optimal operating parameters for advanced alkaline water electrolysis. International Journal of Hydrogen Energy, 47(82), 34773-34783. https://doi.org/10.1016/j.ijhydene.2022.08.075.

Gil, A. C. (2008). Métodos e técnicas de pesquisa social. (6a ed.), Atlas.

Grigoriev, S. A., Fateev, V. N., Bessarabov, D. G. & Millet, P. (2020). Current status, research trends, and challenges in water electrolysis science and technology. International Journal of Hydrogen Energy, 45(49), 26036-26058. https://doi.org/10.1016/j.ijhydene.2020.03.109.

Guo, J., Guo, Q., Liu, J. & Wang, H. (2023). The polarization and heat generation characteristics of lithium-ion battery with electric–thermal coupled modeling. Batteries, 9(11), 529. https://doi.org/10.3390/batteries9110529.

Hamali, S., Loavenia, C. & Tanly, T. (2023). Reduce machine downtime using reliability and root cause analysis for sustainable industry. In E3S Web of Conferences (Vol. 426, p. 01037). EDP Sciences. https://doi.org/10.1051/e3sconf/202342601037.

Islam, M. H., Burheim, O. S. & Pollet, B. G. (2019). Sonochemical and sonoelectrochemical production of hydrogen. Ultrasonics sonochemistry, 51, 533-555. https://doi.org/10.1016/j.ultsonch.2018.08.024.

Kumar, S. S., Ramakrishna, S. U. B., Krishna, S. V., Srilatha, K., Devi, B. R. & Himabindu, V. (2018). Synthesis of titanium (IV) oxide composite membrane for hydrogen production through alkaline water electrolysis. South African Journal of Chemical Engineering, 25(1), 54-61. https://doi.org/10.1016/j.sajce.2017.12.004.

Kumar, S. S. & Lim, H. (2022). An overview of water electrolysis technologies for green hydrogen production. Energy Reports, 8, 13793-13813. https://doi.org/10.1016/j.egyr.2022.10.127.

Li, S-D., Wang, C-C. & Chen, C-Y. (2009). Water electrolysis in the presence of an ultrasonic field. Electrochimica Acta, 54(15), 3877–3883. https://doi.org/10.1016/j.electacta.2009.01.087.

Marconi, M. A. & Lakatos, E. M. (2003). Fundamentos de metodologia científica. (5a ed.) Atlas.

Nefedov, V., Matveev, V., Sukhyy, K., Polishchuk, Y., Bulat, A., Bluss, B. & Mukhachev, A. (2023). Electrochemical production of hydrogen in reactors with reduced energy costs. In IOP Conference Series: Earth and Environmental Science (Vol. 1156, No. 1, p. 012034). IOP Publishing. doi:10.1088/1755-1315/1156/1/012034.

Nemitallah, M. A., Rashwan, S. S., Mansir, I. B., Abdelhafez, A. A. & Habib, M. A. (2018). Review of novel combustion techniques for clean power production in gas turbines. Energy & Fuels, 32(2), 979-1004. https://doi.org/10.1021/acs.energyfuels.7b03607.

Niroula, S., Chaudhary, C., Subedi, A. & Thapa, B. S. (2023). Parametric modelling and optimization of alkaline electrolyzer for the production of Green Hydrogen. In IOP Conference Series: Materials Science and Engineering (Vol. 1279, No. 1, p. 012005). IOP Publishing. doi:10.1088/1757-899X/1279/1/012005.

Park, S. W., Kim, J. H. & Seo, J. K. (2022). Explosion characteristics of hydrogen gas in varying ship ventilation tunnel geometries: an experimental study. Journal of Marine Science and Engineering, 10(4), 532. https://doi.org/10.3390/jmse10040532.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria, RS, Brasil. UAB/NTE/UFSM. ISBN: 978-85-8341-204-5.

Rashid, M. D., Al Mesfer, M. K., Naseem, H. & Danish, M. (2015). Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. International Journal of Engineering and Advanced Technology, 4(3), 80-93. ISSN: 2249 – 8958.

Ratova, D.-M. V., Mikheev, I. V., Chermashentsev, G. R., Maslakov, K. I., Kottsov, S. Y., Stolbov, D. N., Maksimov, S. V., Sozarukova, M. M., Proskurnina, E. V. & Proskurnin, M. A. (2023). Green and sustainable ultrasound-assisted anodic electrochemical preparation of graphene oxide dispersions and their antioxidant properties. Molecules, 28(7), 3238. https://doi.org/10.3390/molecules28073238.

Sakas, G., Ibáñez-Rioja, A., Ruuskanen, V., Kosonen, A., Ahola, J. & Bergmann, O. (2022). Dynamic energy and mass balance model for an industrial alkaline water electrolyzer plant process. International Journal of Hydrogen Energy, 47(7), 4328-4345. https://doi.org/10.1016/J.IJHYDENE.2021.11.126.

Santos, D. M. F., Sequeira, C. A. C. & Figueiredo, J. L. (2013). Hydrogen production by alkaline water electrolysis. Química Nova, 36 (8), 1176-1193. https://doi.org/10.1590/S0100-40422013000800017.

Sazali, N. (2020). Emerging technologies by hidrogen: A review. Internacional Journal of Hydrogen Energy, 45(38), 18753-18771. https://doi.org/10.1016/j.ijhydene.2020.05.021.

Ursúa, A. & Sanchis, P. (2012). Static–dynamic modelling of the electrical behaviour of a commercial advanced alkaline water electrolyser. International journal of hydrogen energy, 37(24), 18598-18614. https://doi.org/10.1016/j.ijhydene.2012.09.125.

Victoria, A., Hine, P. J., Ward, K. & Ries, M. E. (2023). Design of experiments in the optimization of all-cellulose composites. Cellulose, 30(17), 11013-11039. https://doi.org/10.1007/s10570-023-05535-8.

Zadeh, S. H. (2014). Hydrogen production via ultrasound-aided alkaline water electrolysis. Journal of Automation and Control Engineering, 2(1). https://doi.org/10.12720/joace.2.1.103-109.

Downloads

Published

01/07/2024

How to Cite

MENEZES, C. M. B. de .; SOBRAL, D. de M. .; MENEZES, N. C. B. .; BARBOSA, A. C. .; SANTOS , L. B. dos .; BENACHOUR, M. .; SANTOS, V. A. dos . Preliminary study of the efficiency of alkaline water electrolysis for hydrogen production using an ultrasonic electrode. Research, Society and Development, [S. l.], v. 13, n. 7, p. e3113746225, 2024. DOI: 10.33448/rsd-v13i7.46225. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/46225. Acesso em: 17 jul. 2024.

Issue

Section

Engineerings