Biochemical and immunological aspects of atherosclerosis and its contributing dietary factors - A narrative review
DOI:
https://doi.org/10.33448/rsd-v13i7.46239Keywords:
Lipoproteins; Endothelial dysfunction; Atheromatous plaque; Nutrition.Abstract
Atherosclerosis is a dysfunction that affects the endothelium lining the artery, making it more susceptible to the deposition of LDL in the intima, its innermost layer. Oxidized LDL stimulates endothelial cells to secrete molecules that promote the migration of monocytes from the bloodstream to the injured region. In the tissue, monocytes differentiate into macrophages that phagocytosis the oxidized LDL particles and form foam cells that trigger the atheroma plaque that causes the stiffening of the vessels and hinders the passage of blood, and its rupture generates cardiovascular complications such as heart attack and stroke. Dietary habits play a determining role in this pathology, where foods that are sources of saturated and trans fats can favor the development of atherosclerosis by increasing serum LDL concentrations. In contrast, a diet with foods that are sources of more and less soluble fiber, unsaturated fatty acids, bioactive compounds, and antioxidant micronutrients prevents the development of atherosclerosis, as it contributes to the reduction of serum LDL levels and the neutralization of reactive species derived from oxygen and nitrogen. The aim of this study was to conduct a narrative review of the biochemical and immunological aspects of atherosclerosis, and the dietary factors that contribute to its prevention and/or treatment. Since this is a disease that causes serious complications to the cardiovascular system, such as heart attack and stroke, it is important to apply prophylactic measures to prevent such comorbidity.
References
Agrawal, S., Zaritsky, J. J., Fornoni, A., & Smoyer, W. E. (2018). Dyslipidaemia in nephrotic syndrome: mechanisms and treatment. Nat. Rev. Nephrol., 14:54-70. https://doi.org/10.1038/nrneph.2017.155.
Alabi, A., Xia, X-D., Gu, H-M., Wang, F., Deng, S-J., & Yang, N. et al. (2021). Membrane type 1 matrix metalloproteinase promotes LDL receptor shedding and accelerates the development of atherosclerosis. Nat. Commun., 12:1889. https://doi.org/10.1038/s41467-021-22167-3.
Alharbi, M. O., Dutta, B., Goswami, R., Sharma, S., Lei, K. Y., & Rahaman, S. O. (2021). Identification and functional analysis of a biflavone as a novel inhibitor of transient receptor potential vanilloid 4-dependent atherogenic processes. Sci. Rep., 11:8173. https://doi.org/10.1038/s41598-021-87696-9.
Amir, S., & Binder, C. J. (2010). Experimental immunotherapeutic approaches for atherosclerosis. Clinic. Immunol., 134:66-79. doi: 10.1016/j.clim.2009.07.009.
Ardestani, S. B., Eftedal, J., Pedersen, M., Jeppersen, P. B., Norregaard, R., & Matchkov, V. V. (2020). Endothelial dysfunction in small arteries and early signs of atherosclerosis in ApoE knockout rats. Sci. Rep., 10:15296. https://doi.org/10.1038/s41598-020-72338-3.
Aronis, K. N., Khan, S. M., & Mantzoros, C. S. (2012). Effects of trans fatty acids on glucose homeostasis: a meta-analysis of randomized, placebo-controlled clinical trials. Am. J. Clin. Nutr., 96:1093-1099. https://doi.org/10.3945/ajcn.112.040576.
Bachetti, T., Turco, I., Urbano, A., Morres, C., & Ferreti, G. (2019). Relationship of fruit and vegetable intake to dietary antioxidant capacity and markers of oxidative stress: A sex-related study. Nutrition, 61:164-172. https://doi.org/10.1016/j.nut.2018.10.034.
Ballout, R. A., & Remaley, A. T. (2021). Pediatric dyslipidemias: Lipoprotein metabolism disorders in children. In book: Biochemical and molecular basis of pediatric disease. Edition: 5th Edition. Chapter: 28, 965-1022. https://doi.org/10.1016/B978-0-12-817962-8.00002-0.
Barba-Orellana, S., Barba, F. J., Quilez, F., Cuesta, L., Denoya, G. I., & Vieira, P. et al. (2020). Nutrition, public health, and sustainability: an overview of current challenges and future perspectives. In book: Agri-food industry strategies for healthy diets and sustainability. Chapter 1, 3-50. https://doi.org/10.1016/B978-0-12-817226-1.00001-1.
Basatemur, G. L., Jorgensen, H. F., Clarke, M. C. H., Bennett, M. R., & Mallat, Z. (2019). Vascular smooth muscle cells in atherosclerosis. Nat. Rev. Cardiol., 16:727-744. https://doi.org/10.1038/s41569-019-0227-9.
Battino, M., Giampieri, F., Cianciosi, D., Ansary, J., Chen, X., & Zhang, D. et al. (2021). The roles of strawberry and honey phytochemicals on human health: A possible clue on the molecular mechanisms involved in the prevention of oxidative stress and inflammation. Phytomedicine, 86:153170. https://doi.org/10.1016/j.phymed.2020.153170.
Behl, T., Bungau, S., Kumar, K., Zengin, G., Khan F., & Kumar, A. et al. (2020). Pleotropic effects of polyphenols in cardiovascular system. Biomed. Pharmacother., 130:110714. https://doi.org/10.1016/j.biopha.2020.110714.
Beilstein, F., Carrière, V., Leturque, A., & Demignot, S. (2016). Characteristics and functions of lipid droplets and associated proteins in enterocytes. Exp. Cell. Res., 340:172-179. https://doi.org/10.1016/j.yexcr.2015.09.018.
Beyer, P. L. (2012). Ingestão, digestão, absorção, transporte e excreção de nutrientes. In: Mahan, L., & Escott-Stump, S. Krause: alimentos, nutrição e dietoterapia, São Paulo: Elsevier, Capítulo 1, 40-71.
Biziulevičius, G. A., & Kazlauskaitè, J. (2007). Following Hippocrates’ advice ‘Let food be thy medicine and medicine be thy food’: An alternative method for evaluation of the immunostimulatory potential of food proteins. Med. Hypotheses, 68:712-713. https://doi.org/10.1016/j.mehy.2006.09.001.
Blankenberg, S., Barbaux, S., & Tiret, L. (2003). Adhesion molecules and atherosclerosis. Atherosclerosis, 170:191-203. https://doi.org/0.1016/s0021-9150(03)00097-2.
Brüssow, H., & Parkinson, S. J. (2014). You are what you eat. Nat. Biotechnol., 32:243-245. https://doi.org/10.1038/nbt.2845.
Busatto, S., Walker, S. A., Grayson, W., Pham, A., Tian, M., & Nesto, N. et al. (2020). Lipoprotein-based drug delivery. Adv. Drug. Deliv. Rev., 159:377-390. https://doi.org/10.1016/j.addr.2020.08.003.
Castaño, D., Rattanasopa, C., Monteiro-Cardoso, V. F., Corlianò, M., Liu, Y., & Zhong, S. et al. (2020). Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv. Drug. Deliv. Rev., 159:54-93. https://doi.org/10.1016/j.addr.2020.04.013.
Chen, P., Bornhorst, J., & Aschner, M. (2018). Manganese metabolism in humans. Front. Biosci., 23:1655-1679. https://doi.org/10.2741/4665.
Chinetti-Gbaguidi, G., Colin, S., & Staels, B. (2015). Macrophage subsets in atherosclerosis. Nat. Rev. Cardiol., 12:10-17. https://doi.org/10.1038/nrcardio.2014.173.
Cortes, V. A., Busso, D., Maiz, A., Arteaga, A., Nervi, F., & Rigotti, A. (2014). Physiological and pathological implications of cholesterol. Front. Biosci., 19:416-428. https://doi.org/10.2741/4216.
Costa, M. R., Garcia, J. L., Silva, C. C. V. A., Ferraz, A. P. C. R., Francisqueti-Ferron, V. F., & Ferron, A. J. T. et al. (2020). Pathological bases of oxidative stress in the development of cardiovascular diseases. In book: Pathology and oxidative stress and dietary antioxidante. Chapter 4, 39-48. https://doi.org/10.1016/B978-0-12-815972-9.00004-4.
DeBose-Boyd, R. A. (2008). Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res., 18:609-621. https://doi.org/10.1038/cr.2008.61.
Demigné, C., Morand, C., Levrat, M-A., Besson, C., Moundras, C., & Rémésy, C. (1995). Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes. Br. J. Nutr., 74:209-219. https://doi.org/10.1079/BJN19950124.
Demignot, S., Beilstein, F., & Morel, E. (2014). Triglyceride-rich lipoproteins and cytosolic lipid droplets in enterocytes: Key players in intestinal physiology and metabolic disorders. Biochimie, 96:48-55. https://doi.org/10.1016/j.biochi.2013.07.009.
Demos, C., Tamargo, I., & Jo, H. (2021). Biomechanical regulation of endothelial function in atherosclerosis. In book: Biomechanics of coronary atherosclerotic plaque. Chapter 1, 3-47. https://doi.org/10.1016/B978-0-12-817195-0.00001-9.
Dominguez, L. J., & Barbagallo, M. (2020). Dietary fiber intake and the Mediterranean population. In book: The Mediterranean diet. Second Edition. Chapter 23, 257-265. https://doi.org/10.1016/B978-0-12-818649-7.00023-0.
Ems, T., Lucia, K. S., & Huecker, M. R. (2022). Biochemistry, iron absorption. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
Feaver, R. E., Hastings, N. E., Pryor, A., & Blackman, B. R. (2008). GRP78 upregulation by atheroprone shear stress via p38-, alpha2beta1-dependent mechanism in endothelial cells. Arterioscler. Thromb. Vasc. Biol., 28:1534-1541. https://doi.org/10.1161/ATVBAHA.108.167999.
Gallagher, M. L. (2012). Ingestão: os nutrientes e seu metabolismo. In: Mahan, L., & Escott-Stump, S. Krause: Alimentos, nutrição e dietoterapia. Elsevier, 3:99-294.
García, T. J., & Agüero, S. D. (2014). Fosfolípidos: propriedades y efectos sobre la salud. Nutri. Hosp., 31:76-83. https://dx.doi.org/10.3305/nh.2015.31.1.7961.
Genest, J., & Libby, P. (2018). Distúrbios das lipoproteínas e doença cardiovascular. In: Mann, D. L., Zipes, D. P., Libby, P., & Bonow, R. O. Braunwald: Tratado de doenças cardiovasculares. São Paulo: Elsevier, Capítulo 45, 2556-2612.
Godala, M. M., Materek-Kusmierkiewics, I., Moczulski, D., Rutkowski, M., Szatko, F., & Gaszyńska, E. et al. (2016). Lower plasma levels of antioxidant vitamins in patients with metabolic syndrome: A case control study. Adv. Clin. Exp. Med. JCR, 25:689-700. https://doi.org/10.17219/acem/41049.
Groner, J., Goepferich, A., & Breunig, M. (2021). Atherosclerosis: Conventional intake of cardiovascular drugs versus delivery using nanotechnology - A new chance for causative therapy? J. Control. Release, 333:536-559. https://doi.org/10.1016/j.jconrel.2021.03.034.
Gu, Y., & Yin, J. (2020). Saturated fatty acids promote cholesterol biosynthesis: Effects and mechanisms. Obes. Med., 18:100201. https://doi.org/10.1016/j.obmed.2020.100201.
Haarhaus, M., Brandenburg, V., Kalantar-Zadeh, K., Stenvinkel, P., & Magnusson, P. (2017). Alkaline phosphatase: A novel treatment target for cardiovascular disease in CKD. Nat. Rev. Nephrol., 13:429-442. https://doi.org/10.1038/nrneph.2017.60.
Han, Y-H., Onufer, E. J., Huang, L-H., Sprung, R. W., & Davidson, W. S. et al. (2021). Enterically derived high-density lipoprotein restrains liver injury via the portal vein. Science, 373:eabe6729. doi: 10.1126/science.abe6729.
Heeren, J., & Scheja, L. (2021). Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol. Metab., 50:1011238. doi: 10.1016/j.molmet.2021.101238.
Hegele, R. A. (2009). Plasma lipoproteins: genetic influences and clinical implications. Nat. Rev. Genet., 10:109-121. https://doi.org/10.1038/nrg2481.
Hegele, R. A. (2021). Lipoprotein and lipid metabolism. In book: Emery and rimoin’s principles and practice of medical genetics and genomics. Seven Edition. Chapter 7, 235-278. https://doi.org/10.1016/B978-0-12-812535-9.00007-8.
Innes, J. K., & Calder, P. C. (2018). Omega-6 fatty acids and inflammation. Prostaglandins Leukot. Essent. Fat. Acids, 132:41-48. https://doi.org/10.1016/j.plefa.2018.03.004.
Insull Jr, W. (2009). The pathology of atherosclerosis: plaque development and plaque responses to medical treatment. Am. J. Med., 122:S3-S14. https://doi.org/10.1016/j.amjmed.2008.10.013.
Islam, A., Amin, M. N., Siddiqui, S. A., Hossain, P., Sultana, F., & Kabir, R. (2019). Trans fatty acids and lipid profile: A serious risk factor to cardiovascular disease, cancer and diabetes. Diabetes Metab. Syndr., 13:1643-1647. https://doi.org/10.1016/j.dsx.2019.03.033.
Itabe, H., Obama, T., & Kato, R. (2011). The dynamics of oxidized LDL during atherogenesis. J. Lipids, 2011:418313. https://doi.org/10.1155/2011/418313.
Ketelhuth, D. F. J., & Hansson, G. K. (2016). Adaptive response of T and B cells in atherosclerosis. Circ. Res., 118:668-678. http://doi.org/10.1161/CIRCRESAHA.115.306427.
Khan, J., Deb, P. K., Priya, S., Medina, K. D., Devi, R., & Walode, S. G. et al. (2021). Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules, 26:4021. https://doi.org/10.3390/molecules26134021.
Khosla, P., & Hayes, K. C. (1996). Dietary trans-monounsaturated fatty acids negatively impact plasma lipids in humans: Critical review of the evidence. J. Am. Coll. Nutr., 15:325-339. doi: 10.1080/07315724.1996.10718607.
Kiani, R. (2022). Dyslipidemia. In book: Practical cardiology. Second Edition. Chapter 21, 387-393. https://doi.org/10.1016/B978-0-323-80915-3.00031-4.
Kim, K-W., Ivanov, S., & Williams, J. W. (2021). Monocyte recruitment, specification, and function in atherosclerosis. Cells, 10:15. https://doi.org/10.3390/cells10010015.
Kovačević, D. B., Brdar, D., Fabečić, P., Barba, F. J., Lorenzo, J. M., & Putinik, P. (2020). Strategies to achieve a healthy and balanced diet: fruits and vegetables as a natural source of bioactive compounds. In book: Agri-food industry strategies for healthy diets and sustainability. Chapter 2, 51-88. https://doi.org/10.1016/B978-0-12-817226-1.00002-3.
Kresanov, P., Mykkänen, J., Ahotupa, M., Ala-Korpela, M., Juolana, M., & Kaikkonen, J. et al. (2021). The associations of oxidized lipoprotein lipids with lipoprotein subclass particle concentrations and their lipid compositions. The Cardiovascular Risk in Young Finns Study. Free Radic. Biol. Med., 162:225-232. https://doi.org/10.1016/j.freeradbiomed.2020.10.020.
Kruger, M. J., Davies, N., Myburgh, K. H., & Lecour, S. (2014). Proanthocyanidins, anthocyanins and cardiovascular diseases. Food Res. Int., 59:41-52. https://doi.org/10.1016/j.foodres.2014.01.046.
Kumari, A., Kristensen, K. K., Ploug, M., & Whinter, A-M. L. (2021). The importance of lipoprotein lipase regulation in atherosclerosis. Biomed., 9:782. https://doi.org/10.3390/biomedicines9070782.
Lammers, T., & Noels, H. (2020). Lipids in disease pathology, diagnosis & therapy. Adv. Drug. Deliv. Rev., 159:1-3. https://doi.org/10.1016/j.addr.2020.11.006.
Li, J., & Pfeffer, S. R. (2016). Lysossomal membrane glycoproteins bind cholesterol and contribute to lysosomal cholesterol export. eLife, 5:e21635. https://doi.org/10.7554/eLife.21635.002.
Libby, P. (2012). Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 32:2045-2051. https://doi.org/10.1161/ATVBAHA.108.179705.
Libby, P. (2018). Biologia vascular da aterosclerose. In: Mann, D. L., Zipes, D. P., Libby, P., & Bonow, R. O. Braunwald: Tratado de doenças cardiovasculares. São Paulo: Elsevier, Capítulo 41, 2269-2308.
Libby, P. (2021). The changing landscape of atherosclerosis. Nat., 592:524-533. https://doi.org/10.1038/s41586-021-03392-8.
Libby, P., Buring, J. E., Badimon, L., Hansson, G. K., Deanfield, J., & Bittencourt, M. S. et al. (2019). Atherosclerosis. Nat. Rev. Dis. Primers, 5:56. https://doi.org/10.1038/s41572-019-0106-z.
Lichtenstein, A. H. (2014). Dietary trans fatty acids and cardiovascular disease risk: past and present. Curr. Atheroscler. Rep., 16:433. https://doi.org/10.1007/s11883-014-0433-1.
Liu, L., Zeng, P., Yang, X., Duan, Y., Zang, W., & Ma, C. et al. (2018). Inhibition of vascular calcification: A new antiatherogenic mechanism of topo II (DNA Topoisomerase II) inhibitors. Arterioscler. Thromb. Vasc. Biol., 38:2382-2395. https://doi.org/10.1161/ATVBAHA.118.311546.
López-Miranda, J., Pérez-Martinez, P., & Pérez-Jiménez, F. (2006). Health benefits of monounsaturated fatty acids. In book: Improving the fat content of foods. Woodhead Publishing Series in Food Science, Technology and Nutrition. Chapter 4, 71-106. https://doi.org/10.1533/9781845691073.1.71.
Luo, J., Yang, H., & Song, B-L. (2020). Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell. Biol., 21:225-245. https://doi.org/10.1038/s41580-019-0190-7.
Luz, P. L., Chagas, A. C. P., Dourado, P. M. M., & Laurindo, F. R. M. (2018). Endothelium in atherosclerosis: plaque formation and its complications. In book: Endothelium and cardiovascular diseases. Vascular biology and clinical syndromes. Chapter 33, 493-512. https://doi.org/10.1016/B978-0-12-812348-5.00033-7.
Mach, F., Baigent, C., Catapano, A. L., Koskinas, K. C., Casula, M., & Badimon, L. et al. (2020). 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: The task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart. J., 41:111-188. https://doi.org/10.1093/eurheartj/ehz455.
Maguire, E. M., Pearce, S. W. A., & Xiao, Q. (2019). Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascul. Pharmacol., 112:54-71. https://doi.org/10.1016/j.vph.2018.08.002.
Manieri, T. M., Sensi, S. L., Squitti, R., & Cerchiaro, G. (2021). Structural effects of stabilization and complexation of a zinc-deficient superoxide dismutase. Helyon, 7:e06100. https://doi.org/10.1016/j.heliyon.2021.e06100.
Marques, D. O., & Quintilio, M. S. V. (2021). Farmacologia e riscos das drogas para emagrecer. Revista Coleta Científica, 5:38-49. https://doi.org/10.5281/zenodo.5093482.
McQuilken, S. A. (2021). Digestion and absorption. Anaesth. Intensiv. Care Med, 22:336-338. https://doi.org/10.1016/j.mpaic.2020.12.009.
Mead, J. R., Irvine, S. A., & Ramji, D. P. (2002). Lipoprotein lipase: structure, function, regulation, and role in disease. J. Mol. Med., 80:753-769. https://doi.org/10.1007/s00109-002-0384-9.
Mehta, A., & Shapiro, M. D. (2022). Apolipoproteins in vascular biology and atherosclerotic disease. Nat. Rev. Cardiol., 19:168-179. https://doi.org/10.1038/s41569-021-00613-5.
Mestas, J., & Ley, K. (2008). Monocyte-endothelial cell interactions in the development of atherosclerosis. Trends Cardiovasc. Med., 18:228-232. https://doi.org/10.1016/j.tcm.2008.11.004.
Moerman, A. M., Visscher, M., Slijkhuis, N., Gaalen, K. V., Heijs, B., & Klein, T. et al. (2021). Lipid signature of advanced human carotid atherosclerosis assessed by mass spectrometry imaging. J. Lipid Res., 62:100020. https://doi.org/10.1194/jlr.RA120000974.
Moore, K. J., & Tabas, I. (2011). Macrophages in the pathogenesis of atherosclerosis. Cell, 145:341-345. https://doi.org/10.1016/j.cell.2011.04.005.
Moore, K. J., Sheedy, F. J., & Fisher, E. A. (2013). Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol., 13:709-721. https://doi.org/10.1038/nri3520.
Nawaz, M. S., Shoaib, B., & Asharaf, M. A. (2021). Intelligent cardiovascular disease prediction empowered with gradient descent optimization. Helyon, 7:e06948. https://doi.org/10.1016/j.heliyon.2021.e06948.
Nelson, D. L., & Cox, M. M. (2014). Princípios de bioquímica de Lehninger. Porto Alegre: Artmed.
Nie, Y., & Luo, F. (2021). Dietary fiber: An opportunity for a global control of hyperlipidemia. Oxid. Med. Cell. Longev., 2021:5542342. doi: 10.1155/2021/5542342.
Noels, H., Lehrke, M., Vanholder, R., & Jankowski, J. (2021). Lipoproteins and fatty acids in chronic kidney disease: molecular and metabolic alterations. Nat. Rev. Nephrol., 17:528-542. https://doi.org/10.1038/s41581-021-00423-5.
O’Connor, R. A., Cahill, P. A., & McGuinness, G. B. (2020). Cardiovascular tissue engineering. In book: Biomaterials for organ and tissue regeneration. New technologies and future prospects. Woodhead Publishing Series in Biomaterials. Chapter 10, 249-272. https://doi.org/10.1016/B978-0-08-102906-0.00011-8.
Oliveira, F. L. C., Patin, R. V., & Escrivão, M. A. M. S. (2010). Atherosclerosis prevention and treatment in children and adolescents. Expert. Rev. Cardiovasc. Ther., 8:513-528. https://doi.org/10.1586/erc.09.170.
Oram, J. F., & Vaughan, A. M. (2006). ATP-binding cassette cholesterol transporters and cardiovascular disease. Circ. Res., 99:1031-1043. https://doi.org/10.1161/01.RES.0000250171.54048.5c.
Paul, O., Tao, J. Q., Guo, X., & Chatterjee, S. (2021). The vascular system: Components, signaling, and regulation. In book: Endothelial signaling in vascular dysfunction and disease. Chapter 1, 3-13. https://doi.org/10.1016/B978-0-12-816196-8.00023-0.
Pleouras, D. S., Sakellarios, A. I., Tsompou, P., Kigka, V., Kyriakidis, S., & Rocchiccioli, S. et al. (2020). Simulation of atherosclerotic plaque growth using computational biomechanics and paient-specific data. Sci. Rep., 10: 17409. https://doi.org/10.1038/s41598-020-74583-y.
Pownall, H. J., Rosales, C., Gillard, B. K., & Gotto Jr, A. M. (2021). High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nat. Rev. Cardiol., 18:712-723. https://doi.org/10.1038/s41569-021-00538-z.
Poznyak, A. V., Wu, W-K., Melnichennko, A. A., Wetzker, R., Sukhorukov, V., & Markin, A. M. et al. (2020). Signaling pathways and key genes involved in regulation of foam cell formation in atherosclerosis. Cells, 9:584. https://doi.org/10.3390/cells9030584.
Radomska-Leśniewska, D. M., Balan, B. J., & Skopiński, P. (2017). Angiogenesis modulation by exogenous antioxidants. Cent. Eur. J. Immuno., 42:370-376. https://doi.org/10.5114/ceji.2017.72804.
Ravi, S., Duraisamy, P., Krishnan, M., Martin, L. C., Manikandan, B., & Raman, T. et al. (2021). An insight on 7-ketocholesterol mediated inflammation in atherosclerosis and potential therapeutics. Steroids, 172:108854. https://doi.org/10.1016/j.steroids.2021.108854.
Raymond, J. L., & Couch, S. C. (2018). Dietoterapia para doença cardiovascular. In: Mahan, L., & Escott-Stump, S. Krause: alimentos, nutrição e dietoterapia. São Paulo: Elsevier, Capítulo 33, 2402-2517.
Rondanelli, M., Perdoni, F., Peroni, G., Caporali, R., Gasparri, C., & Riva, A. et al. (2021). Ideal food pyramid for patients with rheumatoid arthritis: A narrative review. Clin. Nutr., 40:661-689. https://doi.org/10.1016/j.clnu.2020.08.020.
Roth, G. A., Mensah, G. A., Jhonson, C. O., Addolorato, G., Ammirati, E., & Baddour, L. M. et al. (2020). Global burden of cardiovascular diseases and risk factors, 1990-2019: Update from the GDB 2019 study. J. Am. Coll. Cardiol., 76:2982-3021. https://doi.org/10.1016/j.jacc.2020.11.010.
Ruiz-Léon, A. M., Lapuente, M., Estruch, R., & Casas, R. (2019). Clinical advances in immunonutrition and atherosclerosis: A review. Front. Immunol., 10:839. https://doi.org/10.3389/fimmu.2019.00837.
Sabatini, N., Perri, E., & Rongai, D. (2018). Olive oil antioxidants and aging. In book: Food quality: Balancing health and disease. Handbook of food bioengineering. Chapter 4, 145-157. https://doi.org/10.1016/B978-0-12-811442-1.00004-3.
Saini, R. K., & Keum, Y-S. (2018). Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance - A review. Life Sci., 203:255-267. https://doi.org/10.1016/j.lfs.2018.04.049.
Sandesara, P. B., Virani, S. S., Fazio, S., & Shapiro, M. D. (2019). The forgotten lipids: Triglycerides, remnant cholesterol, and atherosclerotic cardiovascular disease risk. Endocr. Rev., 40:537-557. https://doi.org/10.1210/er.2018-00184.
Santos, J. L., Quadros, A. S., Weschenfelder, C., Garofallo, S. B., & Marcadenti, A. (2020). Oxidative stress biomarkers, nut-related antioxidants, and cardiovascular disease. Nutrients, 12:682. https://doi.org/10.3390/nu12030682.
Schober, A., Nazari-Jahantigh, M., & Wber, C. (2015). MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis. Nat. Rev. Cardiol., 12:361-374. https://doi.org/10.1038/nrcardio.2015.38.
Sethi, S., Gibney, M. J., & Williams, C. M. (1993). Postprandial lipoprotein metabolism. Nutr. Res. Rev., 6:161-183. https://doi.org/10.1079/NRR19930011.
Shah, B., & Thadani, U. (2019). Trans fatty acids linked to myocardial infarction and stroke: What is the evidence? Trends Cardiovasc. Med., 29:306-310. https://doi.org/10.1016/j.tcm.2018.09.011.
Shelness, G. S., & Sellers, J. A. (2001). Very-low-density lipoprotein assembly and secretion. Curr. Opin. Lipidol., 12:151-157. https://doi.org/10.1097/00041433-200104000-00008.
Shreenath, A. P., Hashmi, M. F., & Dooley, J. (2024). Selenium deficiency. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
Silva, R. A., Bersch-Ferreira, A. C., Gehringe, M. O., Ross-Fernandes, M. B., Amaral, C. K., & Wang, H-T. L. et al. (2021). Effect of qualitative and quantitative nutritional plan on gene expression in obese patients in secondary prevention for cardiovascular disease. Clin. Nutr. Espen., 41:351-359. https://doi.org/10.1016/j.clnesp.2020.11.002.
Simopoulos, A. P. (2006). Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed. Pharmacother., 60:502-507. https://doi.org/10.1016/j.biopha.2006.07.080.
Skiadas, P. K., & Lascaratos, J. G. (2001). Dietetics in ancient Greek philosophy: Plato’s concepts of healthy diet. Eur. J. Clin. Nutr., 55:532-537. https://doi.org/10.1038/sj.ejcn.1601179.
Smith, C., Marks, A. D., & Lieberman, M. (2007). Absorção, síntese, metabolismo e destino do colesterol. In: Smith, C., Marks, A. D., & Lieberman, M. Bioquímica médica básica de Marks: Uma abordagem clínica. 2. Ed. Porto Alegre: Artmed, 34:619-653.
Smith, C., Marks, A. D., & Lieberman, M. (2007). Toxicidade do oxigênio e danos por radicais livres. In: Smith, C., Marks, A. D., & Lieberman, M. Bioquímica médica básica de Marks: Uma abordagem clínica. 2. Ed. Porto Alegre: Artmed, 24:439-457.
Soehnlein, O., & Libby, P. (2021). Targent inflamation in atherosclerosis - from experimental insights to the clinic. Nat. Rev. Drug. Discov., 20:589-610. https://doi.org/10.1038/s41573-021-00198-1.
Soppert, J., Lehrke, M., Marx, N., Jankowski, K., & Noels, H. (2020). Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv. Drug. Deliv. Rev., 159:4-33. https://doi.org/10.1016/j.addr.2020.07.019.
Soran, H., & Durrington, P. N. (2011). Susceptibility of LDL and its subfractions to glycation. Curr. Opin. Lipidol., 22:254-261. https://doi.org/10.1097/MOL.0b013e328348a43f.
Suzuki, T., & Swift, L. L. (2016). Discovery of novel splice variants and regulatory mechanisms for microsomal triglyceride transfer protein in human tissues. Sci. Rep., 6:27308. https://doi.org/10.1038/srep27308.
Tabas, I., & Lichtman, A. H. (2017). Monocyte-macrophages and T cells in atherosclerosis. Immunity, 47:621-634. https://doi.org/10.1016/j.immuni.2017.09.008.
Tajbakssh, A., Kovanen, P. T., Rezaee, M., Banach, M., Moallen, S. A., & Sahebkar, A. et al. (2020). Regulation of efferocytosis by caspase-dependent apoptotic cell death in atherosclerosis. Int. J. Biochem. Cell Biol., 120:105684. https://doi.org/10.1016/j.biocel.2020.105684.
Torres, N., Guevara-Cruz, M., Velásquez-Villegas, L. A., & Tovar, A. R. (2015). Nutrition and atherosclerosis. Arch. Med. Res., 46:408-426, https://doi.org/10.1016/j.arcmed.2015.05.010.
Tortosa-Caparrós, E., Navas-Carrillo, D., Marín, F., & Orenes-Piñero, E. (2017). Anti-inflammatory effects of omega 3 and omega 6 polyunsaturated fatty acids in cardiovascular disease and metabolic syndrome. Crit. Rev. Food Sci. Nutr., 57:3421-3429. https://doi.org/10.1080/10408398.2015.1126549.
Tsimikas, S., & Hall, J. L. (2012). Lipoprotein(a) as a potential causal genetic risk factor of cardiovascular disease: a rationale for increased efforts to understand its pathophysiology and develop targeted therapies. J. Am. Coll. Cardiol., 60:716-721. https://doi.org/10.1016/j.jacc.2012.04.038.
Tvdá, E., & Benko, F. (2020). Free radicals: what they are and what they do. In book: Pathology. Chapter 1, 3-13. https://doi.org/10.1016/B978-0-12-815972-9.00001-9.
Uesugi, S., Ishihara, J., Isso, H., Sawada, N., Takachi, R., & Inoue, M. et al. (2017). Dietary intake of antioxidant vitamins and risk of stroke: the Japan Public Health Center-based Prospective Study. Eur. J. Clin. Nutr., 71:1179-1185. https://doi.org/10.1038/ejcn.2017.71.
Valanti, E-K., Dalakoura-Karagkouni, K., Siasos, G., Kardassis, D., Eliopoulos, A. G., & Sanoudou, D. (2021). Advances in biological therapies for dyslipidemias and atherosclerosis. Metab. Clin. Exp., 116:154461. https://doi.org/10.1016/j.metabol.2020.154461.
Vallim, T., & Salter, A. M. (2010). Regulation of hepatic gene expression by saturated fatty acids. Prostaglandins, Leukot. Essent. Fatty Acids, 82:211-218. https://doi.org/10.1016/j.plefa.2010.02.016.
Vaziri, N. D. (2016). HDL abnormalities in nephrotic syndrome and chronic kidney disease. Nat. Rev. Nephrol., 12:37-47. https://doi.org/10.1038/nrneph.2015.180.
Wang, H., Airola, M. V., & Reue, K. (2017). How lipid droplets “TAG” along: Glycerolipid synthetic enzymes and lipid storage. Biochim. Biophys. Acta, Mol. Cell. Res., 1862:1131-1145. https://doi.org/10.1016/j.bbalip.2017.06.010.
Wang, L., Tao, L., Hao, L., Stanley, T. H., Huang, K-H., & Lambert, J. D. et al. (2020). A moderate-fat diet with one avocado per day increases plasma antioxidants and decreases the oxidation of small, dense LDL in adults with overweight and obesity: A randomized controlled trial. J. Nutri., 150:276-284. https://doi.org/10.1093/jn/nxz231.
Wolska, A., & Remaley, A. T. (2021). Lipoproteins. In book: Handbook of diagnostic endocrinology. Third Edition. Chapter 9, 287-308. https://doi.org/10.1016/B978-0-12-818277-2.00009-1.
Word Health Organization - WHO. (2021). Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
Wu, Z., Wagner, M. A., Zheng, L., Parks, J. S., Shy III, J. M., & Smith, J. D. et al. (2007). The refined structure of nascent HDL reveals a key functional domain for particle maturation and dysfunction. Nat. Struct. Mol. Biol., 14:861-868. https://doi.org/10.1038/nsmb1284.
Xue, Q., He, N., Wang, Z., Fu, X., Aung, L. H. H., & Liu, Y. et al. (2021). Functional roles and mechanisms of ginsenosides from Panax ginseng in atherosclerosis. J. Ginseng Res., 45:22-31. https://doi.org/10.1016/j.jgr.2020.07.002.
Yuan, P., Cui, S., Liu, Y., Li, J., Du, G., & Liu, L. (2020). Metabolic engineering for the production of fat-soluble vitamins: advances and perspectives. Appl. Microbiol. Biotechnol., 104:935-951. doi: 10.1007/s00253-019-10157-x.
Yusuf, B., Mukovozov, I., Patel, S., Huang, Y-W., Liu, G. Y., & Reddy, E. C. et al. (2021). The neurorepellent, Slit2, prevents macrophage lipid loading by inhibiting CD36-dependent binding and internalization of oxidized low-density lipoprotein. Sci. Rep., 11:3614. https://doi.org/10.1038/s41598-021-83046-x.
Zekavast, S. M., Ruotsalainen, S., Handsaker R. E., Alver, M., Bloom, J., & Poterba, T. et al. (2018). Deep coverage whole genome sequences and plasma lipoprotein(a) in individuals of European and African ancestries. Nat. Commun., 9:2606. https://doi.org/10.1038/s41467-018-04668-w.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Madalena Geralda Cupertino Ribeiro; Martha Elisa Ferreira de Almeida; Beatriz Barakat ; Gabrielly Senna Parussolo; Bianca Ferreira de Santana; Lucas Inácio de Loyola Vinha
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.