Effect of ketamine enantiomers and maternal deprivation on depressive-like behavior and plasma concentration of BDNF in rats
DOI:
https://doi.org/10.33448/rsd-v13i7.46352Keywords:
Ketamine; Maternal deprivation; Depressive disorder, treatment-resistant; Brain-derived neurotrophic factor.Abstract
Background: Low doses of different ketamine enantiomers have demonstrated rapid behavioural and biological actions in animals with depressive-like behavior. However, some authors report different effects depending on model of depression and ketamine isomer used. Objective: Our primary aim was to evaluate the effect of ketamine enantiomers on depressive-like behavior, anhedonic-like behavior and locomotor activity of rats subjected to maternal deprivation (MD). Secondarily, we investigated the Brain-derived neurotrophic factor plasma concentration between experimental groups. Methods: Male rats (n=71) were randomized into seven experimental groups: one non-deprived with placebo and other six deprived split into control and intervention groups. Rats were treated with a single intraperitoneal dose of ketamine, esketamine, or arketamine. One hour after drug application, we performed experimental tests to evaluate the antidepressant-like behavior and locomotor activity. Furthermore, blood was collected to measure plasmatic BDNF levels. Results: We did not observe induction of depressive-like in rats subjected to MD. Furthermore, there was no change in BDNF (F (6,64) = 0.9664, p=0.455) between all experimental groups. Conclusion: Neither MD nor the different ketamine isomers were able to change depressive-like behavior or plasma BDNF levels.
References
Autry, A. E., & Adachi, M. (2012). NMDA receptor blockade. 475(7354), 91–95. https://doi.org/10.1038/nature10130.NMDA
Bonapersona, V., Kentrop, J., Van Lissa, C. J., van der Veen, R., Joëls, M., & Sarabdjitsingh, R. A. (2019). The behavioral phenotype of early life adversity: A 3-level meta-analysis of rodent studies. Neuroscience and Biobehavioral Reviews, 102(April), 299–307. https://doi.org/10.1016/j.neubiorev.2019.04.021
Chan, M. H., Chiu, P. H., Lin, C. Y., & Chen, H. H. (2012). Inhibition of glycogen synthase kinase-3 attenuates psychotomimetic effects of ketamine. Schizophrenia Research, 136(1–3), 96–103. https://doi.org/10.1016/j.schres.2012.01.024
Delfino, R. S., Surjan, J., Bandeira, I. D., Braziliano, L., Correia-Melo, F. S., Del-Porto, J. A., Quarantini, L. C., & Lacerda, A. L. T. (2020). NMDA Antagonists and Their Role in the Management of Bipolar Disorder: a Review. Current Behavioral Neuroscience Reports, 7(2), 76–85. https://doi.org/10.1007/s40473-020-00201-w
Dimatelis, J. J., Stein, D. J., & Russell, V. A. (2012). Behavioral changes after maternal separation are reversed by chronic constant light treatment. Brain Research, 1480, 61–71. https://doi.org/10.1016/j.brainres.2012.07.013
Dong, C., Zhang, J. C., Yao, W., Ren, Q., Ma, M., Yang, C., Chaki, S., & Hashimoto, K. (2017). Rapid and Sustained Antidepressant Action of the mGlu2/3 Receptor Antagonist MGS0039 in the Social Defeat Stress Model: Comparison with Ketamine. International Journal of Neuropsychopharmacology, 20(3), 228–236. https://doi.org/10.1093/ijnp/pyw089
Elfving, B., Plougmann, P. H., Müller, H. K., Mathé, A. A., Rosenberg, R., & Wegener, G. (2010). Inverse correlation of brain and blood BDNF levels in a genetic rat model of depression. International Journal of Neuropsychopharmacology, 13(5), 563–572. https://doi.org/10.1017/S1461145709990721
Ellenbroek, B. A., & Riva, M. A. (2003). Early maternal deprivation as an animal model for schizophrenia. Clinical Neuroscience Research, 3(4–5), 297–302. https://doi.org/10.1016/S1566-2772(03)00090-2
Fukumoto, K., Toki, H., Iijima, M., Hashihayata, T., Yamaguchi, J. I., Hashimoto, K., & Chaki, S. (2017). Antidepressant potential of (R)-ketamine in rodent models: Comparison with (S)-ketamine. Journal of Pharmacology and Experimental Therapeutics, 361(1), 9–16. https://doi.org/10.1124/jpet.116.239228
Getachew, B., & Tizabi, Y. (2019). Both ketamine and NBQX attenuate alcohol-withdrawal induced depression in male rats. Journal of Drug and Alcohol Research, 8, 1–12. https://doi.org/10.4303/jdar/236069
Hunt, M. J., Raynaud, B., & Garcia, R. (2006). Ketamine Dose-Dependently Induces High-Frequency Oscillations in the Nucleus Accumbens in Freely Moving Rats. Biological Psychiatry, 60(11), 1206–1214. https://doi.org/10.1016/j.biopsych.2006.01.020
Ladd, C. O., Huot, R. L., Thrivikraman, K. V., Nemeroff, C. B., Meaney, M. J., & Plotsky, P. M. (2000). Long-term behavioral and neuroendocrine adaptations to adverse early experience. Progress in Brain Research, 122, 81–103. https://doi.org/10.1016/s0079-6123(08)62132-9
LeMoult, J., Humphreys, K. L., Tracy, A., Hoffmeister, J.-A., Ip, E., & Gotlib, I. H. (2020). Meta-analysis: Exposure to Early Life Stress and Risk for Depression in Childhood and Adolescence. Journal of the American Academy of Child and Adolescent Psychiatry, 59(7), 842–855. https://doi.org/10.1016/j.jaac.2019.10.011
Lippmann, M., Bress, A., Nemeroff, C. B., Plotsky, P. M., & Monteggia, L. M. (2007). Long-term behavioural and molecular alterations associated with maternal separation in rats. European Journal of Neuroscience, 25(10), 3091–3098. https://doi.org/10.1111/j.1460-9568.2007.05522.x
Marais, L., van Rensburg, S. J., van Zyl, J. M., Stein, D. J., & Daniels, W. M. U. (2008). Maternal separation of rat pups increases the risk of developing depressive-like behavior after subsequent chronic stress by altering corticosterone and neurotrophin levels in the hippocampus. Neuroscience Research, 61(1), 106–112. https://doi.org/10.1016/j.neures.2008.01.011
Murthy, S., & Gould, E. (2018). Early life stress in rodents: Animal models of illness or resilience? Frontiers in Behavioral Neuroscience, 12(July), 1–5. https://doi.org/10.3389/fnbeh.2018.00157
Nedelec, M. Le, Glue, P., Winter, H., Goulton, C., Broughton, L., & Medlicott, N. (2018). Acute low-dose ketamine produces a rapid and robust increase in plasma BDNF without altering brain BDNF concentrations. Drug Delivery and Translational Research, 8(3), 780–786. https://doi.org/10.1007/s13346-017-0476-2
Palareti, G., Legnani, C., Cosmi, B., Antonucci, E., Erba, N., Poli, D., Testa, S., & Tosetto, A. (2016). Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study. International Journal of Laboratory Hematology, 38(1), 42–49. https://doi.org/10.1111/ijlh.12426
Polyakova, M., Stuke, K., Schuemberg, K., Mueller, K., Schoenknecht, P., & Schroeter, M. L. (2015). BDNF as a biomarker for successful treatment of mood disorders: A systematic & quantitative meta-analysis. Journal of Affective Disorders, 174, 432–440. https://doi.org/10.1016/j.jad.2014.11.044
Rehan, W., Antfolk, J., Johansson, A., Jern, P., & Santtila, P. (2017). Experiences of severe childhood maltreatment, depression, anxiety and alcohol abuse among adults in Finland. PLoS ONE, 12(5), 1–12. https://doi.org/10.1371/journal.pone.0177252
Réus, G. Z., Abelaira, H. M., dos Santos, M. A. B., Carlessi, A. S., Tomaz, D. B., Neotti, M. V., Liranço, J. L. G., Gubert, C., Barth, M., Kapczinski, F., & Quevedo, J. (2013). Ketamine and imipramine in the nucleus accumbens regulate histone deacetylation induced by maternal deprivation and are critical for associated behaviors. Behavioural Brain Research, 256, 451–456. https://doi.org/10.1016/j.bbr.2013.08.041
Réus, G. Z., Carlessi, A. S., Titus, S. E., Abelaira, H. M., Ignácio, Z. M., da Luz, J. R., Matias, B. I., Bruchchen, L., Florentino, D., Vieira, A., Petronilho, F., & Quevedo, J. (2015). A single dose of S-ketamine induces long-term antidepressant effects and decreases oxidative stress in adulthood rats following maternal deprivation. Developmental Neurobiology, 75(11), 1268–1281. https://doi.org/10.1002/dneu.22283
Réus, G. Z., Silva, R. H., de Moura, A. B., Presa, J. F., Abelaira, H. M., Abatti, M., Vieira, A., Pescador, B., Michels, M., Ignácio, Z. M., Dal-Pizzol, F., & Quevedo, J. (2019). Early Maternal Deprivation Induces Microglial Activation, Alters Glial Fibrillary Acidic Protein Immunoreactivity and Indoleamine 2,3-Dioxygenase during the Development of Offspring Rats. Molecular Neurobiology, 56(2), 1096–1108. https://doi.org/10.1007/s12035-018-1161-2
Réus, G. Z., Stringari, R. B., Ribeiro, K. F., Cipriano, A. L., Panizzutti, B. S., Stertz, L., Lersch, C., Kapczinski, F., & Quevedo, J. (2011). Maternal deprivation induces depressive-like behaviour and alters neurotrophin levels in the rat brain. Neurochemical Research, 36(3), 460–466. https://doi.org/10.1007/s11064-010-0364-3
Ryder, S., Way, W. L., & Trevor, A. J. (1978). Comparative pharmacology of the optical isomers of ketamine in mice. European Journal of Pharmacology, 49(1), 15–23. https://doi.org/10.1016/0014-2999(78)90217-0
Salgado, J. V., & Sandner, G. (2013). A critical overview of animal models of psychiatric disorders: Challenges and perspectives. Revista Brasileira de Psiquiatria, 35(SUPPL.2), 77–81. https://doi.org/10.1590/1516-4446-2013-1156
Schmidt, M. V., Wang, X. D., & Meijer, O. C. (2011). Early life stress paradigms in rodents: Potential animal models of depression? Psychopharmacology, 214(1), 131–140. https://doi.org/10.1007/s00213-010-2096-0
Slattery, D. A., & Cryan, J. F. (2012). Using the rat forced swim test to assess antidepressant-like activity in rodents. Nature Protocols, 7(6), 1009–1014. https://doi.org/10.1038/nprot.2012.044
Tractenberg, S. G., Levandowski, M. L., de Azeredo, L. A., Orso, R., Roithmann, L. G., Hoffmann, E. S., Brenhouse, H., & Grassi-Oliveira, R. (2016). An overview of maternal separation effects on behavioural outcomes in mice: Evidence from a four-stage methodological systematic review. Neuroscience and Biobehavioral Reviews, 68, 489–503. https://doi.org/10.1016/j.neubiorev.2016.06.021
Valvassori, S. S., Varela, R. B., Resende, W. R., Possamai-Della, T., de Araujo Borba, L., Behenck, J. P., Réus, G. Z., & Quevedo, J. (2024). Antidepressant Effect of Sodium Butyrate is Accompanied by Brain Epigenetic Modulation in Rats Subjected to Early or Late Life Stress. Current neurovascular research, 10.2174/0115672026277345240115101852. Advance online publication. https://doi.org/10.2174/0115672026277345240115101852
Vargas, J., Junco, M., Gomez, C., & Lajud, N. (2016). Early life stress increases metabolic risk, HPA axis reactivity, and depressive-like behavior when combined with postweaning social isolation in rats. PLoS ONE, 11(9), 1–21. https://doi.org/10.1371/journal.pone.0162665
Wang, D., Levine, J. L. S., Avila-Quintero, V., Bloch, M., & Kaffman, A. (2020). Systematic review and meta-analysis: effects of maternal separation on anxiety-like behavior in rodents. Translational Psychiatry, 10(1). https://doi.org/10.1038/s41398-020-0856-0
Wang, L., Zhao, S., Shao, J., & Su, C. (2024). The effect and mechanism of low-dose esketamine in neuropathic pain-related depression-like behavior in rats. Brain research, 149117. Advance online publication. https://doi.org/10.1016/j.brainres.2024.149117
Yang, C., Shirayama, Y., Zhang, J. C., Ren, Q., Yao, W., Ma, M., Dong, C., & Hashimoto, K. (2015). R-ketamine: A rapid-onset and sustained antidepressant without psychotomimetic side effects. Translational Psychiatry, 5(July), 1–8. https://doi.org/10.1038/tp.2015.136
Zanos, P., Moaddel, R., Morris, P. J., Georgiou, P., Fischell, J., Elmer, G. I., Alkondon, M., Yuan, P., Pribut, H. J., Singh, N. S., Dossou, K. S. S., Fang, Y., Huang, X. P., Mayo, C. L., Wainer, I. W., Albuquerque, E. X., Thompson, S. M., Thomas, C. J., Zarate, C. A., & Gould, T. D. (2016). NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature, 533(7604), 481–486. https://doi.org/10.1038/nature17998
Zanos, P., Moaddel, R., Morris, P. J., Riggs, L. M., Highland, J. N., Georgiou, P., Pereira, E. F. R., Albuquerque, E. X., Thomas, C. J., Zarate, C. A., & Gould, T. D. (2018). Ketamine and ketamine metabolite pharmacology: Insights into therapeutic mechanisms. Pharmacological Reviews, 70(3), 621–660. https://doi.org/10.1124/pr.117.015198
Zhang, M., Radford, K. D., Driscoll, M., Purnomo, S., Kim, J., & Choi, K. H. (2019). Effects of subanesthetic intravenous ketamine infusion on neuroplasticity-related proteins in the prefrontal cortex, amygdala, and hippocampus of Sprague-Dawley rats. IBRO Reports, 6, 87–94. https://doi.org/10.1016/j.ibror.2019.01.006
Zugno, A. I., de Miranda, I. M., Budni, J., Volpato, A. M., Luca, R. D., Deroza, P. F., de Oliveira, M. B., Heylmann, A. S., da Rosa Silveira, F., Wessler, P., Antunes Mastella, G., Cipriano, A. L., & Quevedo, J. (2013). Effect of maternal deprivation on acetylcholinesterase activity and behavioral changes on the ketamine-induced animal model of schizophrenia. Neuroscience, 248, 252–260. https://doi.org/10.1016/j.neuroscience.2013.05.059
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Graziele Beanes; Beatriz A. Carneiro; Gilson S. Marques; Pedro Guilherme B. de S. Nazaré; Israel N. Matos; Gilson C. de Carvalho; Clarissa de S. Schitine; Alex Cleber Improta-Caria; Ryan dos S. Costa; Rejane Conceição Santana
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.