Solar energy forecasting models using Python

Authors

DOI:

https://doi.org/10.33448/rsd-v13i8.46500

Keywords:

Modeling; NASA; Artificial intelligence; Support vector machine; Artificial neural networks.

Abstract

The main objective of this study is to provide a clear and systematic framework for data collection, preparation, modeling, evaluation and analysis of the results obtained. This study explores the potential of artificial intelligence (AI) models to predict solar radiation in Belém-PA, with a view to optimizing solar energy generation in the region. By analyzing data from the NASA POWER satellite (2024), several regression models were implemented and evaluated, including Random Forest, Support Vector Machine (SVM), Artificial Neural Network (ANN), Gradient Boosting Tree (GBT), Multivariate Adaptive Regression Spline (MARS) and Classification and Regression Tree (CART). The results show that Random Forest stands out in terms of average accuracy, while MARS and GBT are more robust in generalizing the data. Cross-validation and the analysis of metrics such as RMSE and MBE prove the importance of assessing the reliability of the models. However, the anomalous performance of CART, with an RMSE of 0.0 in both evaluations, requires investigation to verify the existence of overfitting. In summary, this study highlights the potential of AI models for predicting solar radiation in Belém-PA, with Random Forest, MARS and GBT presenting themselves as promising models for solar energy forecasting applications. There is a need for more comprehensive cross-validation and investigation of CART's performance to ensure the robustness and reliability of the results, driving the optimization of solar energy generation in the region.

References

Alkahtani, H., Aldhyani, T. H. H., & Alsubari, S. N. (2023). Application of Artificial Intelligence Model Solar Radiation Prediction for Renewable Energy Systems. Sustainability, 15(8), 6973. https://doi.org/10.3390/su15086973

Alizamir, M., Kim, S., Kisi, O., & Zounemat-Kermani, M. (2020). A comparative study of several machine learning based non-linear regression methods in estimating solar radiation: Case studies of the USA and Turkey regions. Energy, 197, 117239. https://doi.org/10.1016/j.energy.2020.117239

Alizamir, M., Shiri, J., Fard, A. F., Kim, S., Gorgij, A. D., Heddam, S., & Singh, V. P. (2023). Improving the accuracy of daily solar radiation prediction by climatic data using an efficient hybrid deep learning model: Long short-term memory (LSTM) network coupled with wavelet transform. Engineering Applications of Artificial Intelligence, 123, 106199. https://doi.org/10.1016/j.engappai.2023.106199

Chen, Y., Bai, M., Zhang, Y., Liu, J., & Yu, D. (2023). Proactively selection of input variables based on information gain factors for deep learning models in short-term solar irradiance forecasting. Energy, 284, 129261. https://doi.org/10.1016/j.energy.2023.129261

Fan, J., Wang, X., Wu, L., Zhou, H., Zhang, F., Yu, X., Lu, X., & Xiang, Y. (2018). Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China. Energy Conversion and Management, 164, 102–111. https://doi.org/10.1016/j.enconman.2018.02.087

Feng, Y., Cui, N., Zhang, Q., Zhao, L., & Gong, D. (2017). Comparison of artificial intelligence and empirical models for estimation of daily diffuse solar radiation in North China Plain. 42(21), 14418–14428. https://doi.org/10.1016/j.ijhydene.2017.04.084

Gil, A. A. C. (2010). Como elaborar projetos de pesquisa. Éditeur: São Paulo: Atlas.

Gürel, A. E., Ağbulut, Ü., Bakır, H., Ergün, A., & Yıldız, G. (2023). A state of art review on estimation of solar radiation with various models. Heliyon, e13167. https://doi.org/10.1016/j.heliyon.2023.e13167

Hedar, A.-R., Almaraashi, M., Abdel-Hakim, A. E., & Abdulrahim, M. (2021). Hybrid Machine Learning for Solar Radiation Prediction in Reduced Feature Spaces. Energies, 14(23), 7970. https://doi.org/10.3390/en14237970

Huang, J., & Liu, H. (2021). A hybrid decomposition-boosting model for short-term multi-step solar radiation forecasting with NARX neural network. Journal of Central South University, 28(2), 507–526. https://doi.org/10.1007/s11771-021-4618-9

Köche, J. C. (1997) Fundamentos de metodologia científica: teoria da ciência e iniciação à pesquisa. Vozes

Khosravi, A., Koury, R. N. N., Machado, L., & Pabon, J. J. G. (2018 a). Prediction of hourly solar radiation in Abu Musa Island using machine learning algorithms. Journal of Cleaner Production, 176, 63–75. https://doi.org/10.1016/j.jclepro.2017.12.065

Khosravi, A., Nunes, R. O., Assad, M. E. H., & Machado, L. (2018 b). Comparison of artificial intelligence methods in estimation of daily global solar radiation. Journal of Cleaner Production, 194, 342–358. https://doi.org/10.1016/j.jclepro.2018.05.147

Khosravi, A., Syri, S., Pabon, J. J. G., Sandoval, O. R., Caetano, B. C., & Barrientos, M. H. (2019). Energy modeling of a solar dish/Stirling by artificial intelligence approach. Energy Conversion and Management, 199, 112021. https://doi.org/10.1016/j.enconman.2019.112021

Kosovic, I. N., Mastelic, T., & Ivankovic, D. (2020). Using Artificial Intelligence on environmental data from Internet of Things for estimating solar radiation: Comprehensive analysis. Journal of Cleaner Production, 266, 121489. https://doi.org/10.1016/j.jclepro.2020.121489

NASA. (2024). NASA POWER | Prediction Of Worldwide Energy Resources. Nasa.gov. https://power.larc.nasa.gov/

Olatomiwa, L., Mekhilef, S., Shamshirband, S., Mohammadi, K., Petković, D., & Sudheer, C. (2015). A support vector machine–firefly algorithm-based model for global solar radiation prediction. Solar Energy, 115, 632–644. https://doi.org/10.1016/j.solener.2015.03.015

Rajasundrapandiyanleebanon, T., Kumaresan, K., Murugan, S., Subathra, M. S. P., & Sivakumar, M. (2023). Solar Energy Forecasting Using Machine Learning and Deep Learning Techniques. Archives of Computational Methods in Engineering. https://doi.org/10.1007/s11831-023-09893-1

Seyyed Mohammad Mousavi, Elham Sadat Mostafavi, & Jiao, P. (2017). Next generation prediction model for daily solar radiation on horizontal surface using a hybrid neural network and simulated annealing method. Energy Conversion and Management, 153, 671–682. https://doi.org/10.1016/j.enconman.2017.09.040

Wang, H., Liu, Y., Zhou, B., Li, C., Cao, G., Voropai, N., & Barakhtenko, E. (2020). Taxonomy research of artificial intelligence for deterministic solar power forecasting. Energy Conversion and Management, 214, 112909. https://doi.org/10.1016/j.enconman.2020.112909

Yuzer, E. O., & Bozkurt, A. (2022). Deep learning model for regional solar radiation estimation using satellite images. Ain Shams Engineering Journal, 102057. https://doi.org/10.1016/j.asej.2022.102057

Zaim, S., El Ibrahimi, M., Arbaoui, A., Samaouali, A., Tlemcani, M., & Barhdadi, A. (2023). Using artificial intelligence for global solar radiation modeling from meteorological variables. Renewable Energy, 215, 118904. https://doi.org/10.1016/j.renene.2023.118904

Zhou, Y. (2022). Artificial intelligence in renewable systems for transformation towards intelligent buildings. Energy and AI, 10, 100182. https://doi.org/10.1016/j.egyai.2022.100182

Published

09/08/2024

How to Cite

TIEGHI, C. P. .; NOGUEIRA, C. E. C. .; SIQUEIRA, J. A. C. .; CARMO, C. R. S. .; ZUIN, L. F. S. .; ALVAREZ, J.; CANEPPELE, F. de L. . Solar energy forecasting models using Python. Research, Society and Development, [S. l.], v. 13, n. 8, p. e2913846500, 2024. DOI: 10.33448/rsd-v13i8.46500. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/46500. Acesso em: 14 sep. 2024.

Issue

Section

Engineerings