Solar energy forecasting models using Python
DOI:
https://doi.org/10.33448/rsd-v13i8.46500Keywords:
Modeling; NASA; Artificial intelligence; Support vector machine; Artificial neural networks.Abstract
The main objective of this study is to provide a clear and systematic framework for data collection, preparation, modeling, evaluation and analysis of the results obtained. This study explores the potential of artificial intelligence (AI) models to predict solar radiation in Belém-PA, with a view to optimizing solar energy generation in the region. By analyzing data from the NASA POWER satellite (2024), several regression models were implemented and evaluated, including Random Forest, Support Vector Machine (SVM), Artificial Neural Network (ANN), Gradient Boosting Tree (GBT), Multivariate Adaptive Regression Spline (MARS) and Classification and Regression Tree (CART). The results show that Random Forest stands out in terms of average accuracy, while MARS and GBT are more robust in generalizing the data. Cross-validation and the analysis of metrics such as RMSE and MBE prove the importance of assessing the reliability of the models. However, the anomalous performance of CART, with an RMSE of 0.0 in both evaluations, requires investigation to verify the existence of overfitting. In summary, this study highlights the potential of AI models for predicting solar radiation in Belém-PA, with Random Forest, MARS and GBT presenting themselves as promising models for solar energy forecasting applications. There is a need for more comprehensive cross-validation and investigation of CART's performance to ensure the robustness and reliability of the results, driving the optimization of solar energy generation in the region.
References
Alkahtani, H., Aldhyani, T. H. H., & Alsubari, S. N. (2023). Application of Artificial Intelligence Model Solar Radiation Prediction for Renewable Energy Systems. Sustainability, 15(8), 6973. https://doi.org/10.3390/su15086973
Alizamir, M., Kim, S., Kisi, O., & Zounemat-Kermani, M. (2020). A comparative study of several machine learning based non-linear regression methods in estimating solar radiation: Case studies of the USA and Turkey regions. Energy, 197, 117239. https://doi.org/10.1016/j.energy.2020.117239
Alizamir, M., Shiri, J., Fard, A. F., Kim, S., Gorgij, A. D., Heddam, S., & Singh, V. P. (2023). Improving the accuracy of daily solar radiation prediction by climatic data using an efficient hybrid deep learning model: Long short-term memory (LSTM) network coupled with wavelet transform. Engineering Applications of Artificial Intelligence, 123, 106199. https://doi.org/10.1016/j.engappai.2023.106199
Chen, Y., Bai, M., Zhang, Y., Liu, J., & Yu, D. (2023). Proactively selection of input variables based on information gain factors for deep learning models in short-term solar irradiance forecasting. Energy, 284, 129261. https://doi.org/10.1016/j.energy.2023.129261
Fan, J., Wang, X., Wu, L., Zhou, H., Zhang, F., Yu, X., Lu, X., & Xiang, Y. (2018). Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China. Energy Conversion and Management, 164, 102–111. https://doi.org/10.1016/j.enconman.2018.02.087
Feng, Y., Cui, N., Zhang, Q., Zhao, L., & Gong, D. (2017). Comparison of artificial intelligence and empirical models for estimation of daily diffuse solar radiation in North China Plain. 42(21), 14418–14428. https://doi.org/10.1016/j.ijhydene.2017.04.084
Gil, A. A. C. (2010). Como elaborar projetos de pesquisa. Éditeur: São Paulo: Atlas.
Gürel, A. E., Ağbulut, Ü., Bakır, H., Ergün, A., & Yıldız, G. (2023). A state of art review on estimation of solar radiation with various models. Heliyon, e13167. https://doi.org/10.1016/j.heliyon.2023.e13167
Hedar, A.-R., Almaraashi, M., Abdel-Hakim, A. E., & Abdulrahim, M. (2021). Hybrid Machine Learning for Solar Radiation Prediction in Reduced Feature Spaces. Energies, 14(23), 7970. https://doi.org/10.3390/en14237970
Huang, J., & Liu, H. (2021). A hybrid decomposition-boosting model for short-term multi-step solar radiation forecasting with NARX neural network. Journal of Central South University, 28(2), 507–526. https://doi.org/10.1007/s11771-021-4618-9
Köche, J. C. (1997) Fundamentos de metodologia científica: teoria da ciência e iniciação à pesquisa. Vozes
Khosravi, A., Koury, R. N. N., Machado, L., & Pabon, J. J. G. (2018 a). Prediction of hourly solar radiation in Abu Musa Island using machine learning algorithms. Journal of Cleaner Production, 176, 63–75. https://doi.org/10.1016/j.jclepro.2017.12.065
Khosravi, A., Nunes, R. O., Assad, M. E. H., & Machado, L. (2018 b). Comparison of artificial intelligence methods in estimation of daily global solar radiation. Journal of Cleaner Production, 194, 342–358. https://doi.org/10.1016/j.jclepro.2018.05.147
Khosravi, A., Syri, S., Pabon, J. J. G., Sandoval, O. R., Caetano, B. C., & Barrientos, M. H. (2019). Energy modeling of a solar dish/Stirling by artificial intelligence approach. Energy Conversion and Management, 199, 112021. https://doi.org/10.1016/j.enconman.2019.112021
Kosovic, I. N., Mastelic, T., & Ivankovic, D. (2020). Using Artificial Intelligence on environmental data from Internet of Things for estimating solar radiation: Comprehensive analysis. Journal of Cleaner Production, 266, 121489. https://doi.org/10.1016/j.jclepro.2020.121489
NASA. (2024). NASA POWER | Prediction Of Worldwide Energy Resources. Nasa.gov. https://power.larc.nasa.gov/
Olatomiwa, L., Mekhilef, S., Shamshirband, S., Mohammadi, K., Petković, D., & Sudheer, C. (2015). A support vector machine–firefly algorithm-based model for global solar radiation prediction. Solar Energy, 115, 632–644. https://doi.org/10.1016/j.solener.2015.03.015
Rajasundrapandiyanleebanon, T., Kumaresan, K., Murugan, S., Subathra, M. S. P., & Sivakumar, M. (2023). Solar Energy Forecasting Using Machine Learning and Deep Learning Techniques. Archives of Computational Methods in Engineering. https://doi.org/10.1007/s11831-023-09893-1
Seyyed Mohammad Mousavi, Elham Sadat Mostafavi, & Jiao, P. (2017). Next generation prediction model for daily solar radiation on horizontal surface using a hybrid neural network and simulated annealing method. Energy Conversion and Management, 153, 671–682. https://doi.org/10.1016/j.enconman.2017.09.040
Wang, H., Liu, Y., Zhou, B., Li, C., Cao, G., Voropai, N., & Barakhtenko, E. (2020). Taxonomy research of artificial intelligence for deterministic solar power forecasting. Energy Conversion and Management, 214, 112909. https://doi.org/10.1016/j.enconman.2020.112909
Yuzer, E. O., & Bozkurt, A. (2022). Deep learning model for regional solar radiation estimation using satellite images. Ain Shams Engineering Journal, 102057. https://doi.org/10.1016/j.asej.2022.102057
Zaim, S., El Ibrahimi, M., Arbaoui, A., Samaouali, A., Tlemcani, M., & Barhdadi, A. (2023). Using artificial intelligence for global solar radiation modeling from meteorological variables. Renewable Energy, 215, 118904. https://doi.org/10.1016/j.renene.2023.118904
Zhou, Y. (2022). Artificial intelligence in renewable systems for transformation towards intelligent buildings. Energy and AI, 10, 100182. https://doi.org/10.1016/j.egyai.2022.100182
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Camila Piacitelli Tieghi; Carlos Educardo Camargo Nogueira; Jair Antonio Cruz Siqueira; Carlos Roberto Souza Carmo; Luís Fernando Soares Zuin; Jorge Alvarez; Fernando de Lima Caneppele
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.