Aquaponics hegemony: An invitation of practice

Authors

DOI:

https://doi.org/10.33448/rsd-v13i8.46594

Keywords:

Aquaponics; Sustainability; Food production; Public policies; Ecological agriculture.

Abstract

Faced with environmental challenges and the growing demand for healthy food, this review aims to present aquaponics as a viable solution to minimize water consumption, reduce environmental pollution, and mitigate soil degradation. The review highlights the importance of overcoming traditional agricultural paradigms and adopting more ecological practices. A detailed analysis of the development and application of aquaponics was conducted, as well as its advantages over conventional methods and different technological approaches, such as the DWC (Deep Water Culture) system. Additionally, technical and economic variables that may influence the success of aquaponics were discussed, along with the possibilities of integrating new technologies and automation practices. The results show that aquaponics uses up to 90% less water compared to traditional methods and can be implemented in reduced spaces, including urban areas and arid regions. The review also emphasizes the need for interdisciplinary knowledge for the effective operation of the system, highlighting the potential of aquaponics to produce high-quality organic food with greater added value. It is concluded that aquaponics represents a promising solution for sustainable food production, with significant economic and ecological benefits, especially when integrated with public policies aimed at food security.

References

Avnimelech, Y. (2015). Biofloc Tecnology- A practical guide book, (3ªed.). The world Aquaculture Society. Baton Rouge, Louisiana, EUA.

Aphotoflora. (2006). Lemna gibba - Fat Duckweed. http://www.aphotoflora.com/images/lemnaceae/lemna_gibba_fat_duckweed_plants_24-09- 06_2.jpg

Azim, M. E. & Little, D. C. (2008). The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283(1), 29-35. DOI:10.1016/j.aquaculture.2008.06.036

Baganz, G.; Baganz, D.; Staacks, G.; Monsees, H.& Kloas, W. (2020) Profitability of multi-loop aquaponics: Year-long production data, economic scenarios and a comprehensive model case. Aquaculture research, 51, 2711-24. https://doi.org/10.1111/are.14610.

Berstein, S. (2011) Aquaponic gardening: step-by-step guide to risen vegetables and fish togheter. New Society Publishers, Gabriola Islands.

Bommarco, R.; Kleun, D. & Potts, S. G. (2013). Ecological intensification: harnessing ecosystem services for food security. Trends in Ecology & Evolution 28(4), 230-8. https://doi.org/10.1016/j.tree.2012.10.012

Cammack, J. A. & Tomberlin, J. K. (2017). O impacto da proteína dietética e do carbohidrato em traços selecionados da vida do soldado negro (Hermetia Illucens L.) Diptera: Stratiomyidade. Insetos, 8,56. https://doi.org/10.3390/insects8030056

Delaide, B.; Goddek, S.; Gott, J.; Soyeurt, H.& Jijacli, M(2016).. Lettuce (Lactuca sativa l. var. Sucrine)growth performance in complemented aquaponics solutions outperforms hydroponics.Water 8:467. https://doi.org/10.3390/w8100467

Duran, A. C. D. F. L. (2013) Ambiente alimentar urbano em São Paulo, Brasil: avaliação, desigualdades e associação com consumo alimentar. Tese de doutorado. Universidade de São Paulo – USP.

Ebeling, J. M.; Timmons, M. B.& BisogniI, J. J .(2006). Engeneering analisys of estoichiometry of photoautotrophic and heterotrophic removal of ammonia-nitrogen in aquaculture systems.Aquaculture,257:346-358. https://doi.org/10.1016/j.aquaculture.2006.03.019

Emerenciano, M.; Carneiro, P.; Lapa, M.; Lapa, K.; Delaide, B.& Goddeck, S. (2017) Mineralização de sólidos. Aqua Bras: 21-26.

Emerenciano, M.; Martinez-Cordova, L.R.; Martinez-Porchas, M. & Miranda-Baeza, A. (2017) Biofloc Tecnology (BFT): a tool for water qualitymanagement in aquaculture.In Tutu H. ( Ed.) Water Quality New York:In Tech. P.91-109. https://doi.org/10.5772/intechopen.68795

FAO (Organização da Nações Unidas para a Agricultura e Alimentação) Food Outlook, 2019. https://doi.org/10.4060/ca7444en

Garnett, T. (2011). Where are the best opportunities for reducing greenhouse gas emission in the food system (including the food chain) Food Policy, 36: S23-S32. https://doi.org/10.1016/j.foodpol.2010.10.010

Goddek, J. (2017). Opportunities and challenges of multi-loop Aquaponic System.,179 p. TPhD Thesis ( Wageningen University , Wageningen, the Netherlands. Berlin, Germany. https://doi.org/10.18174/400050

Goddek, S.& Vermeulen, T. (2018). Comparison of Lactuca sativagrowth performance in conventional and RAS-based hydroponic systems. Aquac Int. 26: 1-10. https://doi.org/10.1007/s10499-017-0206-8

Hoekstra, A. Y. & Chapagain, A. K. (2007). The water footprints of Marocco and the Netherlands: Global water use as a resulto f domestic consumption of agricultural commodities. Ecological economics , 64(1) https://doi.org/10.1016/j.ecolecon.2007.02.022

Joyce, A.; Goddek, S.; Kotzen, B.& Wuertz, S. (2019). Aquaponics: closing the cycle on limited water, land and nutriente resources. https://doi.org/ 10.1007.978-3-030-15943-6_2 . https://doi.org/10.1007/978-3-030-15943-6_2

Junge, R.; Konig, B.; Villarroel, M.; KomibesS, T. & Jijakli, M. H. (2017). Strategic points in aquaponics. Water 9 (3) 182. https://doi.org/10.3390/w9030182

Konig, B.; Junge, R.; Bitsanszki, A.; Villarroel, M. & Komives, T. (2016). On the sustainability of aquaponics.Ecocicles, 2, 26-32. https://doi.org/10.19040/ecocycles.v2i1.50

Konig, B.; Junker, J.; Reinhart, T.; Villarroel, M.; & Junge, R. (2018). Analysis of aquaponics as na emerging technological innovation system. Journal of cleaner production. 180, 232-243. https:// doi.org/10.1016/j.jclepro.2018.01.037. https://doi.org/10.1016/j.jclepro.2018.01.037

Lennard, W. (2017). Commercial aquaponic systems: integrating recirculation fish culture with hydroponic plant production. In Press. Austrália.

Love, D., C.; Fry, J.,P; Genello, L; Hill, E.,S; Frederick,J.,A; Li,X.& Semmens, K. (2014) Na international survey of aquaponics pratictioners. PLoS One 9. https://doi.org/10.1371/journal.pone.0102662

Martinez, P.; Ahmad, R.& Al-Hussein, M. (2019). A vision-based for proinspection of steel frame for manufacturing.Autom. Construct. 97:151-163. https://doi.org/10.1016/j.autcon.2018.10.014

Maucieri, C.; Nicoletto, C.; Junge, R.; Schmautz, Z.; Sambo, P. & Borin, M. (2018). Sistemas hidropônicos e gestão da água em aquaponia: uma revisão. Ital. J. Agron. 13. . https://doi.org/10.4081/ija.2018.1012

Monsees, H.; Keitel, J.; Kloas, W.& Wuertz, S. (2015). Potential reuse of aquacultural waste for nutrientes solutions in aquaponics. In: Proc of aquaculture Europe. Rotterdam, Netherlands. https://doi.org/10.13140/RG.2.2.23458.07363

Murad, S. A. Z.; Harun, A.; Moyar, S. N.; Sapawy, R. & Tem, S. Y. (2017). Design os aquaponics water monitoring system using Arduino microcontroler. Malaysia. https://doi.org/10.1109/ICSIMA.2017.8312045

Pinho, S. M.; Molinari, D.; de Mello, G. L.; Fitzssimons, K. M. & Emerenciano, M. G. C.(2017). Effluent from a biofloc tecnology (BFT) tilápia culture on the aquaponic production of different lettuce varieties. Ecol Eng, 103:146-153. https://doi.org/10.1016/j.ecoleng.2017.03.007

Pinho, S. M.; David, L. H.; Garcia, F.; Keesman, K. J.; Portella, M. C. & Gooddek, S. (2021). South american fish species suitable for aquaponics: a review. Aquaculture Internatinal,. https://doi.org/10.1007/s10499-020-00629-8

Rakocy, J.,E.(2004). Aquaponic production of tilápia and basil: c.omparing a bach and staggered cropping system. Acta Horticulture. 648 p. https://doi.org/10.17660/ActaHortic.2004.648.8

Rakocy, J., E.; Masser, M. P.& Losordo, T. M. (2006). Recirculating aquaculture tank production systems: aquaponics integrating fish and plant culture. Stoneville, Mississipi: SRAC, p. 1-16. https://doi.org/10.32473/edis-fa169-2006

Rakocy, J., E. (2012). Aquaponics integrating fish and plant culture; Wiley-Blackwell: Hoboken, NJ, USA, ;p.344-386. https://doi.org/10.1002/9781118250105.ch12

Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paul. Enferm. 20(2), DOI.org/10.1590/S0103-21002007000200001.

Somerville, C.; Cohen, M.; Pantanella, E.; Stankus, A. & Lovatelli, A. (2014). Small-scale aquaponic food production. Integrated fishand plant farming. nº589, Rome, FAO, 262 p. https://doi.org/10.1007/s10499-016-0074-0

SpranghersS, T.; Ottoboni, M.; Klootwijk,C.; Deboosere, A. O. S.; De Meulenaer,B.; Michiels,J.; Eeckhout, M.; De Clercq,P.& De Smet, S.(2017). Composição nutricional de Black Soldier Fly (Hermetia Illucens), prepupaecriado em diferentes substratos de resíduos orgânicos. Journal of the Science of food and Agriculture, 97 (8), 2594-2600. https://doi.org/10.1002/jsfa.8081

Van Huis, A.;Vanitterbeeck, J.;Klunder, H.;Mertens, E.; Halloran, A.& Muir, G.(2013). Edible insects:Future prospects for food and feed security, nº171. Food and Agriculture Organization of the United Nations – Rome : FAO. https://doi.org/10.1016/j.foodpol.2011.11.004

Yang, Y.;Wu, W.; Zhao, J.; Song, Y.& Gao, L.(2015). Biodegradation and mineralization of polyestyrene by plastic-eating by mealworms . Part 1: Chemical and physical characterizaction and isotopic tests.Environmental Science and Technology, 49 (1): 12080-12086. https://doi.org/10.1021/acs.est.5b02661

Yep, B.& Zheng, Y. (2019). Aquaponic trends and challenges: a review J. Clean.Prod.,228,15861599. https://doi.org/10.1016/j.jclepro.2019.04.232

Published

31/08/2024

How to Cite

LORA, J. .; MORAIS, W. A. .; SOARES, F. A. L. .; RÚBIO NETO, A. . Aquaponics hegemony: An invitation of practice. Research, Society and Development, [S. l.], v. 13, n. 8, p. e13513846594, 2024. DOI: 10.33448/rsd-v13i8.46594. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/46594. Acesso em: 5 jan. 2025.

Issue

Section

Agrarian and Biological Sciences