Simulation of the production process of a mineral water industry by system dynamics method

Authors

DOI:

https://doi.org/10.33448/rsd-v9i7.4729

Keywords:

Mineral water; Simulation; Computational model; System; Industry.

Abstract

This research was conducted with the objective of implementing a computer model to simulate the steps that comprise the operational flowchart of a mineral water industry, using the software Stella 8.0. The model defined as dynamic, stochastic and discrete consisted of eleven interconnected blocks. It was built following the steps of characterizing the real system, creating the conceptual model, structuring and verification of computational model, data collection, and model validation. From data collected in the real system we obtained fits of the distributions used in assembling and verifying the model. Validation of the program was conducted by comparing the data of the real system with simulated data. The values collected in the real system were within the upper and lower limits on the graph obtained by regression analysis, with a confidence level of 95%, ensuring that the computer model adequately represents the real system. However, the computational model developed is appliable to simulate the dynamics of processing lines of Mineral Water, being a tool of production control, which allows the visualization of the behavior of the real system, facilitates the identification of errors, improve production flow, and reduces manufacturing costs by controlling the total processing time. 

References

Adane, T. F., & Nicolescu, M. (2014). System dynamics analysis of energy usage: case studies in automotive manufacturing. International Journal of Manufacturing Research 5, 9(2), 131-156.

Ferreira, J. O., Batalha, M. O., & Domingos, J. C. (2016). Integrated planning model for citrus agribusiness system using systems dynamics. Computers and Electronics in Agriculture, 126, 1-11. Retrieved from http://www.sciencedirect.com/science/article/pii/S0168169916301727. doi:https://doi.org/10.1016/j.compag.2016.04.029

Fetene Adane, T., Bianchi, M. F., Archenti, A., & Nicolescu, M. (2019). Application of system dynamics for analysis of performance of manufacturing systems. Journal of Manufacturing Systems, 53, 212-233. Retrieved from http://www.sciencedirect.com/science/article/pii/S0278612519300895. doi:https://doi.org/10.1016/j.jmsy.2019.10.004

Franco, E. F., Hirama, K., & Carvalho, M. M. (2018). Applying system dynamics approach in software and information system projects: A mapping study. Information and Software Technology, 93, 58-73. Retrieved from http://www.sciencedirect.com/science/article/pii/S0950584916302166. doi:https://doi.org/10.1016/j.infsof.2017.08.013

Leclerc, H., & Moreau, A. (2002). Microbiological safety of natural mineral water. FEMS Microbiology Reviews, 26(2), 207-222. Retrieved from http://www.sciencedirect.com/science/article/pii/S0168644502000979. doi:https://doi.org/10.1016/S0168-6445(02)00097-9

Oßmann, B. E., Sarau, G., Holtmannspötter, H., Pischetsrieder, M., Christiansen, S. H., & Dicke, W. (2018). Small-sized microplastics and pigmented particles in bottled mineral water. Water Research, 141, 307-316. Retrieved from http://www.sciencedirect.com/science/article/pii/S0043135418303956. doi:https://doi.org/10.1016/j.watres.2018.05.027

Oyarbide, A., Baines, T. S., Kay, J. M., & Ladbrook, J. (2003). Manufacturing systems modelling using system dynamics: forming a dedicated modelling tool. Journal of Advanced Manufacturing Systems, 02(01), 71-87. Retrieved from https://www.worldscientific.com/doi/abs/10.1142/S0219686703000228. doi:10.1142/s0219686703000228

Penido, F. C. L., Piló, F. B., Sandes, S. H. d. C., Nunes, Á. C., Colen, G., Oliveira, E. d. S., . . . Lacerda, I. C. A. (2018). Selection of starter cultures for the production of sour cassava starch in a pilot-scale fermentation process. Brazilian Journal of Microbiology, 49(4), 823-831. Retrieved from http://www.sciencedirect.com/science/article/pii/S1517838217304859. doi:https://doi.org/10.1016/j.bjm.2018.02.001

Pereira, A. S., Shitsuka, D., Parreira, F., & Shitsuka, R. (2018). Metodologia da pesquisa científica.[e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia- Pesquisa-Cientifica.pdf?sequence=1.

Petraccia, L., Liberati, G., Giuseppe Masciullo, S., Grassi, M., & Fraioli, A. (2006). Water, mineral waters and health. Clinical Nutrition, 25(3), 377-385. Retrieved from http://www.sciencedirect.com/science/article/pii/S0261561405001792. doi:https://doi.org/10.1016/j.clnu.2005.10.002

Sala-Comorera, L., Blanch, A. R., Casanovas-Massana, A., Monleón-Getino, A., & García-Aljaro, C. (2019). Traceability of different brands of bottled mineral water during shelf life, using PCR-DGGE and next generation sequencing techniques. Food Microbiology, 82, 1-10. Retrieved from http://www.sciencedirect.com/science/article/pii/S0740002018302806. doi:https://doi.org/10.1016/j.fm.2019.01.006

Sterman, J. (2010). Business dynamics: Irwin/McGraw-Hill c2000..

Von Bertalanffy, L. (1973). The meaning of general system theory. In: von Bertalanffy L, editor. General system theory: foundations, development, applications. Rev. ed. New York: George Braziller Inc.; p. 30–52.

Zambon, A. C. (2006). Uma contribuição ao processo de aquisição e sistematização do conhecimento multiespecialista e sua modelagem baseada na dinâmica de sistemas. Tese de doutorado, Universidade Federal de São Carlos, São Carlos, SP, Brasil.

Published

16/06/2020

How to Cite

SILVA, G. de L. P. e; GERALDINE, R. M.; SANTANA, R. F.; BENTO, J. A. C.; SOUZA NETO, M. A. de; CALIARI, M. Simulation of the production process of a mineral water industry by system dynamics method. Research, Society and Development, [S. l.], v. 9, n. 7, p. e950974729, 2020. DOI: 10.33448/rsd-v9i7.4729. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/4729. Acesso em: 15 jan. 2025.

Issue

Section

Exact and Earth Sciences