Use of Artificial Intelligence (AI) tools in image diagnosis
DOI:
https://doi.org/10.33448/rsd-v13i11.47312Keywords:
Artificial intelligence; Imaging diagnosis; Treatment.Abstract
Introduction: In contemporary medicine, Artificial Intelligence (AI) emerges as a revolutionary tool aiding in tasks ranging from the interpretation of medical images, such as computed tomography scans, to the analysis of genomic data. The objective of this research is to investigate how the implementation of Artificial Intelligence (AI) technologies can impact the accuracy and time reduction of imaging diagnoses, in addition to evaluating the effectiveness of treatments. Methodology: This work follows the study methodology proposed by Gil (2002). It consists of an integrative bibliographic review with articles from 2019 to 2024, using the following databases: PubMed, Google Scholar, and SciELO. Results and Discussion: The observed results indicate that the use of deep learning techniques and artificial intelligence (AI) shows great potential in various areas of medicine, particularly in the analysis of medical images and in supporting clinical decision-making. As the implementation of AI in medicine progresses, there is a need for careful consideration of issues such as patient privacy and the need for appropriate regulation to control this activity. Final considerations: It is observed that the use of AI is already a revolutionary reality that is reaching medical practice in image diagnosis. Nonetheless, there are obstacles that need to be overcome for it to be safe, agile, and precise in assisting the physician’s decision regarding the best treatment. Thus, AI should not be considered a threat to the profession but rather a tool that complements the work of doctors, rather than replacing them.
References
Berbís, M. A., Aneiros-Fernández, J., Olivares, F. J. M., Nava, E., & Luna, A. (2021). Role of artificial intelligence in multidisciplinary imaging diagnosis of gastrointestinal diseases. World Journal of Gastroenterology, 27(27), 4395. DOI: https://dx.doi.org/10.3748/wjg.v27.i27.4395.
Brito, E. N. D., de Figueiredo, B. Q., Souto, D. N., Nogueira, J. F., de Castro Melo, A. L., da Silva, I. T., ... & de Almeida, M. G. (2021). Inteligência artificial no diagnóstico de doenças neurodegenerativas: uma revisão sistemática de literatura. Research, Society and Development, 10(11), e482101120004-e482101120004.
Cao, C. L., Li, Q. L., Tong, J., Shi, L. N., Li, W. X., Xu, Y., ... & Cui, X. W. (2023). Artificial intelligence in thyroid ultrasound. Frontiers in Oncology, 13, 1060702. Doi: 10.3389/fonc.2023.1060702.
Chamberlaim, A., de Azevedo Flor, B., da Silva Pereira, E., Almeida, L. S., Martins, L. D., Silva, Y. S., ... & Bovo, F. (2023). Inteligência Artificial (IA) e suas aplicações em exames de imagem: uma nova era para diagnósticos na área da saúde. Cuadernos de Educación y Desarrollo, 15(12), 17605-17624.
Chan, H.-P., Samala, R. K., Hadjiiski, L. M., & Zhou, C. (2020). Aprendizado profundo em análise de imagens médicas. Exp Com Biol, 1213, 3–21. DOI: http://doi.org/10.1007/978-3-030-33128-3_1.
Ebermam, E. & Krohling, R. (2018). Uma introdução compreensiva às redes neurais convolucionais: Um estudo de caso para reconhecimento de caracteres alfabéticos. Revista de Sistemas de Informação da FSMA, 22, 49-59.
Esteva, A., Chou, K., Cui, C., Corrado, G., DePristo, M., Kuleshov, V., Robicquet, A., Ramsundar, B., Thrun, S., & Dean, J. (2019). Aprendizado profundo em medicina: Aplicações em imagens médicas, processamento de linguagem natural, aprendizado por reforço e genômica. Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z.
Fan, X., Qiao, X., Wang, Z., Jiang, L., Liu, Y., & Sun, Q. (2022). Artificial Intelligence‐Based CT Imaging on Diagnosis of Patients with Lumbar Disc Herniation by Scalpel Treatment. Computational Intelligence and Neuroscience, 2022(1), 3688630. https://doi.org/10.1155/2022/3688630.
GIL, A. C. (2002). Como elaborar projetos de pesquisa (4. ed.). Atlas.
Jones, A., et al. (2020). Current challenges in medical diagnosis: A critical review. Medical Sciences.
Lamy, M., & de Malta, K. C. (2023). Avanços e riscos da inteligência artificial na atenção à saúde. Unisanta Law and Social Science, 12(2), 108-119.
Lanzagorta-Ortega, D., Carrillo-Pérez, D. L., & Carrillo-Esper, R. (2022). Inteligencia artificial en medicina: presente y futuro. Gaceta médica de México, 158, 17-21.
Liu, H., Zhao, Y., Yang, F., Lou, X., Wu, F., Li, H., ... & Fan, X. (2022). Preoperative prediction of lymph node metastasis in colorectal cancer with deep learning. BME frontiers, 2022. https://doi.org/10.34133/2022/9860179.
Lobo, L. C. (2017). Inteligência artificial e medicina. Revista Brasileira de Educação Médica, 41, 185-193.
Ludermir, T. B. (2021). Inteligência Artificial e Aprendizado de Máquina: estado atual e tendências. Estudos Avançados, 35, 85-94.
Lundervold, A. S., & Lundervold, A. (2019). Aprendizado profundo em ressonância magnética: Uma visão geral. Z Med Phys, 29(1), 102–127. DOI: https://doi.org/10.1016/j.zemedi.2018.11.002.
Magalhães, M. I. S., Vargas, C. V., da Silva Bomfim, V. V. B., Ferreira, T. G., & Behrens, P. D. A. C. (2024). Impacto da inteligência artificial no diagnóstico médico: desafios e oportunidades. Revista Ibero-Americana de Humanidades, Ciências e Educação, 10(1), 1477-1485.
Martins, T. C. D. F., Silva, J. H. C. M. D., Máximo, G. D. C., & Guimarães, R. M. (2021). Transição da morbimortalidade no Brasil: um desafio aos 30 anos de SUS. Ciência & Saúde Coletiva, 26, 4483-4496.
Minami, Y., Nishida, N., & Kudo, M. (2023). Imaging diagnosis of various hepatocellular carcinoma subtypes and its hypervascular mimics: differential diagnosis based on conventional interpretation and artificial intelligence. Liver Cancer, 12(2), 103-115. DOI: 10.1159/000528538.
Mirbabaie, M., Stieglitz, S., & Frick, N. R. (2021). Artificial intelligence in disease diagnostics: A critical review and classification on the current state of research guiding future direction. Health and Technology, 11(4), 693-731.
Nava, C. F. G., de Godoy, Y. A. M., Souza, R. R. N., Luna, B. M. A., Nunes, M. D. C. H., de Sousa Pinto, M., ... & de Almeida, F. M. (2024). Uma sinfonia de transformação: os benefícios da musicoterapia no cenário terapêutico do Transtorno do Espectro Autista (TEA). Caderno Pedagógico, 21(4), e3609-e3609.
Santos, M. K., Ferreira Júnior, J. R., Wada, D. T., Tenório, A. P. M., Nogueira-Barbosa, M. H., & Marques, P. M. D. A. (2019). Inteligência artificial, aprendizado de máquina, diagnóstico auxiliado por computador e radiômica: avanços da imagem rumo à medicina de precisão. Radiologia brasileira, 52, 387-396.
Silva, A. L., Gonçalves, E. S., Ramalho, J. G. G., Spricigo, T., Castro, A. C. F. (2023). O impacto da tecnologia de inteligência artificial na medicina diagnóstica. Ciências da Saúde, Medicina, 27, 10.5281/zenodo.10301707.
Souza Sant’Anna, B. (2023). Aplicações emergentes da inteligência artificial na radiologia. https://jornaltribuna.com.br/wp-content/uploads/2023/06/APLICACOES-EMERGENTES-DA-INTELIGENCIA-ARTIFICIAL-NA-RADIOLOGIA.pdf
Srivastav, S., Chandrakar, R., Gupta, S., Babhulkar, V., Agrawal, S., Jaiswal, A., ... & Wanjari, M. B. (2023). ChatGPT in radiology: the advantages and limitations of artificial intelligence for medical imaging diagnosis. Cureus, 15(7). DOI 10.7759/cureus.41435.
Topol, E. (2019). Medicina de alto desempenho: a convergência da inteligência humana e artificial. Nature Medicine. Reino Unido, 25(1), 44-56.
Vasconcelos, J. L. M., de Oliveira Rodrigues, P. H., Passos, A. P. V., Viana, A. C. V., de Almeida Miranda, G. C., da Silva, N. B. S., ... & Ramacciotti, A. P. G. (2024). O Papel da Inteligência Artificial como Ferramenta Diagnóstica na Medicina: Uma Revisão Sistemática. Brazilian Journal of Implantology and Health Sciences, 6(9), 3308-3319.
Yasaka, K., & Abe, O. (2018). Deep learning and artificial intelligence in radiology: Current applications and future directions. PLoS medicine, 15(11), e1002707.
Zhang, D., Liu, X., Shao, M., Sun, Y., Lian, Q., & Zhang, H. (2023). The value of artificial intelligence and imaging diagnosis in the fight against COVID-19. Personal and ubiquitous computing, 27(3), 783-792. https://doi.org/10.1007/s00779-021-01522-7.
Zhao, L. T., Liu, Z. Y., Xie, W. F., Shao, L. Z., Lu, J., Tian, J., & Liu, J. G. (2023). What benefit can be obtained from magnetic resonance imaging diagnosis with artificial intelligence in prostate cancer compared with clinical assessments?. Military Medical Research, 10(1), 29. Doi.org/10.1186/s40779-023-00464-w.
Zheng, D., He, X., & Jing, J. (2023). Overview of artificial intelligence in breast cancer medical imaging. Journal of Clinical Medicine, 12(2), 419. https://doi.org/10.3390/jcm12020419.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Fernanda Laignier Gonçalves; Hellem Victória da Penha Souza ; Fabio Marques de Almeida; Murilo de Sousa Pinto
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.