Viscoelasticity, cohesive energy, and viscosity of new hyaluronic acid-based fillers
DOI:
https://doi.org/10.33448/rsd-v13i12.47520Keywords:
Hyaluronic acid; Rheology; Physical property; Cohesive; Viscoelasticity.Abstract
The storage and loss modulus (G'; G"), cohesive energy, and viscosity of Hyaluronic Acids (HA) are key factors to be considered in aesthetic volumizing. Objective. This study aims to assess the properties of three HAs indicated for facial volumization: Gahya Volume, Gahya Light, and Gahya Classic. Methodology. Those rheological properties were performed in a rotational rheometer (TA-Instruments AR-1500ex). The sample volume for analysis was 1.0 mL. The frequency sweep was performed in the range of 10.0 to 0.01 Hz with 15 points. The following parameters were evaluated: viscoelasticity (G' and G") considering the frequency variation, cohesive energy, and viscosity. The statistical method used to compare the results two by two was the unpaired t-test with significance level (p=0.05). Results. The results showed that G' was statistically different when comparing Gahya Classic® and Gahya Light® samples and between Gahya Classic® and Gahya Volume® (p<0.05). Gahya Classic® and Gahya Volume® showed a significant difference from Gahya Volume® for G" (p<0.05). There was no significant difference between the samples for viscosity. Gahya Light® and Gahya Classic® have better elasticity and viscosity, and Gahya Light® and Gahya Volume® have better cohesive energy. Conclusion. Gahya Light® had the best behavior for the analyzed properties.
References
Abatangelo, G., Vindigni, V., Avruscio, G., Pandis, L. & Brun P. (2020). Hyaluronic Acid: Redefining Its Role. Cells, 9(7), 1743.
Borrell, M., Leslie, D. B. & Tezel, A. (2011). Lift capabilities of hyaluronic acid fillers. J Cosmet Laser Ther, 13(1), 21-7.
Chun, C., Kim, Y., Son, S. et al. (2016). Viscoelasticity of hyaluronic acid dermal fillers prepared by crosslinked HA microspheres. Polymer, 40(4), 600-6.
De Boulle, K., Glogau, R., Kono, T., Nathan, M., Tezel, A., Roca-Martinez, J. X., Paliwal, S. & Stroumpoulis, D. (2013). A review of the metabolism of 1,4-butanediol diglycidyl ether-crosslinked hyaluronic acid dermal fillers. Dermatol Surg. 39(12), 1758-66.
Di Gregorio, C., Gauglitz, G. & Partridge, J. (2022). Individualized Treatment Algorithm Using Hyaluronic Acid Fillers for Lifting, Contouring and Volumizing the Midface. Clin Cosmet Investig Dermatol, 15, 681-90.
Edsman, K, Nord, L I, Ohrlund, A, Lärkner, H, & Kenne, A H. (2012). Gel properties of hyaluronic acid dermal fillers. Dermatol Surg, Jul;38(7 Pt 2), 1170-9.
Fagien, S., Bertucci, V., von Grote, E. & Mashburn, J. H. (2019). Rheologic and Physicochemical Properties Used to Differentiate Injectable Hyaluronic Acid Filler Products. Plast Reconstr Surg, 143(4), 707e-720e.
Faivre, J., Gallet, M., Tremblais, E., Trévidic, P. & Bourdon, F. (2021). Advanced Concepts in Rheology for the Evaluation of Hyaluronic Acid-Based Soft Tissue Fillers. Dermatol Surg, 47(5), e159-e167.
Flowers, R. S. (1991). Periorbital aesthetic surgery for men: eyelids and related structures. Clin Plast Surg, 18, 689–729.
Fundarò, S P, Salti, G, Malgapo, D M H, & Innocenti, S. (2022). The Rheology and Physicochemical Characteristics of Hyaluronic Acid Fillers: Their Clinical Implications. Int J Mol Sci, Sep 10;23(18),10518.
Furtado, G. R. D., Barbosa, K. L., Dametto, A. C., Sisnando, A. L. da Silva, L. C. F., Albergaria-Barbosa, J. R. & Rizzatti-Barbosa, C. M. (2023). Rheological properties of hyaluronic acid-based fillers for facial cosmetic aesthetics. Res Soc Develop. 12(1), e22012139676-e22012139676.
Gold, M. (2009). The science and art of hyaluronic acid dermal filler use in esthetic applications. J Cosmet Dermatol. 8(4), 301-7.
Kablik, J., Monheit, G. D., Yu, L., Chang, G. & Gershkovich, J. (2009). Comparative physical properties of hyaluronic acid dermal fillers. Dermatol Surg, 35(Suppl 1):302-12.
Kahn, D. M. & Shaw. R. B. (2008). Aging of the bony orbit: a three-dimensional computed tomographic study. Aesthet Surg J, 28, 258–64.
Kenne, L., Gohil, S., Nilsson, E. M., Karlsson, A., Ericsson, D., Helander Kenne, A. & Nord, L. I. (2013). Modification and cross-linking parameters in hyaluronic acid hydrogels--definitions and analytical methods. Carbohydr Polym, Jan 91(1), 410-8.
Laurent, U. B., Dahl, L. B. & Reed, R. K. (1991). Catabolism of hyaluronan in rabbit skin takes place locally, in lymph nodes and liver. Exp Physiol, 76, 695–703.
Lee, D. Y., Cheon, C., Son, S. et al. (2015). Influence of Molecular Weight on Swelling and Elastic Modulus of Hyaluronic Acid Dermal Fillers. Polymer, 39(6), 976-80.
Pecora, N. G., Baccetti, T. & McNamara, J. A. (2006). Jr The aging craniofacial complex: a longitudinal cephalometric study from late adolescence to late adulthood. Am J Orthod Dentofac Orthop. 134, 496–505.
Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Santa Maria/RS. Ed. UAB/NTE/UFSM.
Pessa, J. E. & Chen, Y. (2002). Curve analysis of the aging orbital aperture. Plast Reconstr Surg. 109, 751–5.
Pessa, J. E. (2000). An algorithm of facial aging: verification of Lambros’s theory by three-dimensional stereolithography, with reference to the pathogenesis of midfacial aging, scleral show, and the lateral suborbital trough deformity. Plast Reconstr Surg. 106, 479–88.
Philipp-Dormston, W. G., Wong, C., Schuster, B., Larsson, M. K. & Podda, M. (2018). Evaluating Perceived Naturalness of Facial Expression After Fillers to the Nasolabial Folds and Lower Face with Standardized Video and Photography. Dermatol Surg, 44(6), 826-32.
Rees, M. D., Hawkins, C. L. & Davies, M. J. (2004). Hypochlorite and superoxide radicals can act synergistically to induce fragmentation of hyaluronan and chondroitin sulphates. (2004). Biochem J, 381,175–84.
Rohrich, R J, Hollier, L H, Jr, Janis, J E, & Kim, J. (2004). Rhinoplasty with L, Terno M, Durini E, Vertuani S, Baldisserotto A, Manfredini S. (2021). Design, Synthesis, Characterization, and In Vitro Evaluation of a New Cross-Linked Hyaluronic Acid for Pharmaceutical and Cosmetic Applications. Pharmaceutics. 13(10, 1672.
Shaw, R B, Jr, & Kahn, D M. (2007). Aging of the midface bony elements: a three-dimensional computed tomographic study. Plast Reconstr Surg, 119, 675–81.
Shaw, R B, Jr, Katzel, E B, Koltz, P F, Kahn, D M, Girotto, J A, & Langstein, H N. (2010). Aging of the mandible and its aesthetic implications. Plast Reconstr Surg, 125, 332–42.
Shitsuka, R. et al. (2014). Matemática fundamental para tecnologia. (2ed.). Editora Erica.
Volpi, N, Schiller, J, Stern, R, & Soltés, L. (2009). Role, metabolism, chemical modifications and applications of hyaluronan. Curr Med Chem,16, 1718–45.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Célia Marisa Rizzatti-Barbosa; Marcos Dornelles; Andrea Riani Costa; José Ricardo de Albergaria-Barbosa
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.