Viscoelasticity, cohesive energy, and viscosity of new hyaluronic acid-based fillers

Authors

DOI:

https://doi.org/10.33448/rsd-v13i12.47520

Keywords:

Hyaluronic acid; Rheology; Physical property; Cohesive; Viscoelasticity.

Abstract

The storage and loss modulus (G'; G"), cohesive energy, and viscosity of Hyaluronic Acids (HA) are key factors to be considered in aesthetic volumizing. Objective. This study aims to assess the properties of three HAs indicated for facial volumization: Gahya Volume, Gahya Light, and Gahya Classic. Methodology. Those rheological properties were performed in a rotational rheometer (TA-Instruments AR-1500ex). The sample volume for analysis was 1.0 mL. The frequency sweep was performed in the range of 10.0 to 0.01 Hz with 15 points. The following parameters were evaluated: viscoelasticity (G' and G") considering the frequency variation, cohesive energy, and viscosity. The statistical method used to compare the results two by two was the unpaired t-test with significance level (p=0.05). Results. The results showed that G' was statistically different when comparing Gahya Classic® and Gahya Light® samples and between Gahya Classic® and Gahya Volume® (p<0.05). Gahya Classic® and Gahya Volume® showed a significant difference from Gahya Volume® for G" (p<0.05). There was no significant difference between the samples for viscosity. Gahya Light® and Gahya Classic® have better elasticity and viscosity, and Gahya Light® and Gahya Volume® have better cohesive energy. Conclusion. Gahya Light® had the best behavior for the analyzed properties.

References

Abatangelo, G., Vindigni, V., Avruscio, G., Pandis, L. & Brun P. (2020). Hyaluronic Acid: Redefining Its Role. Cells, 9(7), 1743.

Borrell, M., Leslie, D. B. & Tezel, A. (2011). Lift capabilities of hyaluronic acid fillers. J Cosmet Laser Ther, 13(1), 21-7.

Chun, C., Kim, Y., Son, S. et al. (2016). Viscoelasticity of hyaluronic acid dermal fillers prepared by crosslinked HA microspheres. Polymer, 40(4), 600-6.

De Boulle, K., Glogau, R., Kono, T., Nathan, M., Tezel, A., Roca-Martinez, J. X., Paliwal, S. & Stroumpoulis, D. (2013). A review of the metabolism of 1,4-butanediol diglycidyl ether-crosslinked hyaluronic acid dermal fillers. Dermatol Surg. 39(12), 1758-66.

Di Gregorio, C., Gauglitz, G. & Partridge, J. (2022). Individualized Treatment Algorithm Using Hyaluronic Acid Fillers for Lifting, Contouring and Volumizing the Midface. Clin Cosmet Investig Dermatol, 15, 681-90.

Edsman, K, Nord, L I, Ohrlund, A, Lärkner, H, & Kenne, A H. (2012). Gel properties of hyaluronic acid dermal fillers. Dermatol Surg, Jul;38(7 Pt 2), 1170-9.

Fagien, S., Bertucci, V., von Grote, E. & Mashburn, J. H. (2019). Rheologic and Physicochemical Properties Used to Differentiate Injectable Hyaluronic Acid Filler Products. Plast Reconstr Surg, 143(4), 707e-720e.

Faivre, J., Gallet, M., Tremblais, E., Trévidic, P. & Bourdon, F. (2021). Advanced Concepts in Rheology for the Evaluation of Hyaluronic Acid-Based Soft Tissue Fillers. Dermatol Surg, 47(5), e159-e167.

Flowers, R. S. (1991). Periorbital aesthetic surgery for men: eyelids and related structures. Clin Plast Surg, 18, 689–729.

Fundarò, S P, Salti, G, Malgapo, D M H, & Innocenti, S. (2022). The Rheology and Physicochemical Characteristics of Hyaluronic Acid Fillers: Their Clinical Implications. Int J Mol Sci, Sep 10;23(18),10518.

Furtado, G. R. D., Barbosa, K. L., Dametto, A. C., Sisnando, A. L. da Silva, L. C. F., Albergaria-Barbosa, J. R. & Rizzatti-Barbosa, C. M. (2023). Rheological properties of hyaluronic acid-based fillers for facial cosmetic aesthetics. Res Soc Develop. 12(1), e22012139676-e22012139676.

Gold, M. (2009). The science and art of hyaluronic acid dermal filler use in esthetic applications. J Cosmet Dermatol. 8(4), 301-7.

Kablik, J., Monheit, G. D., Yu, L., Chang, G. & Gershkovich, J. (2009). Comparative physical properties of hyaluronic acid dermal fillers. Dermatol Surg, 35(Suppl 1):302-12.

Kahn, D. M. & Shaw. R. B. (2008). Aging of the bony orbit: a three-dimensional computed tomographic study. Aesthet Surg J, 28, 258–64.

Kenne, L., Gohil, S., Nilsson, E. M., Karlsson, A., Ericsson, D., Helander Kenne, A. & Nord, L. I. (2013). Modification and cross-linking parameters in hyaluronic acid hydrogels--definitions and analytical methods. Carbohydr Polym, Jan 91(1), 410-8.

Laurent, U. B., Dahl, L. B. & Reed, R. K. (1991). Catabolism of hyaluronan in rabbit skin takes place locally, in lymph nodes and liver. Exp Physiol, 76, 695–703.

Lee, D. Y., Cheon, C., Son, S. et al. (2015). Influence of Molecular Weight on Swelling and Elastic Modulus of Hyaluronic Acid Dermal Fillers. Polymer, 39(6), 976-80.

Pecora, N. G., Baccetti, T. & McNamara, J. A. (2006). Jr The aging craniofacial complex: a longitudinal cephalometric study from late adolescence to late adulthood. Am J Orthod Dentofac Orthop. 134, 496–505.

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Santa Maria/RS. Ed. UAB/NTE/UFSM.

Pessa, J. E. & Chen, Y. (2002). Curve analysis of the aging orbital aperture. Plast Reconstr Surg. 109, 751–5.

Pessa, J. E. (2000). An algorithm of facial aging: verification of Lambros’s theory by three-dimensional stereolithography, with reference to the pathogenesis of midfacial aging, scleral show, and the lateral suborbital trough deformity. Plast Reconstr Surg. 106, 479–88.

Philipp-Dormston, W. G., Wong, C., Schuster, B., Larsson, M. K. & Podda, M. (2018). Evaluating Perceived Naturalness of Facial Expression After Fillers to the Nasolabial Folds and Lower Face with Standardized Video and Photography. Dermatol Surg, 44(6), 826-32.

Rees, M. D., Hawkins, C. L. & Davies, M. J. (2004). Hypochlorite and superoxide radicals can act synergistically to induce fragmentation of hyaluronan and chondroitin sulphates. (2004). Biochem J, 381,175–84.

Rohrich, R J, Hollier, L H, Jr, Janis, J E, & Kim, J. (2004). Rhinoplasty with L, Terno M, Durini E, Vertuani S, Baldisserotto A, Manfredini S. (2021). Design, Synthesis, Characterization, and In Vitro Evaluation of a New Cross-Linked Hyaluronic Acid for Pharmaceutical and Cosmetic Applications. Pharmaceutics. 13(10, 1672.

Shaw, R B, Jr, & Kahn, D M. (2007). Aging of the midface bony elements: a three-dimensional computed tomographic study. Plast Reconstr Surg, 119, 675–81.

Shaw, R B, Jr, Katzel, E B, Koltz, P F, Kahn, D M, Girotto, J A, & Langstein, H N. (2010). Aging of the mandible and its aesthetic implications. Plast Reconstr Surg, 125, 332–42.

Shitsuka, R. et al. (2014). Matemática fundamental para tecnologia. (2ed.). Editora Erica.

Volpi, N, Schiller, J, Stern, R, & Soltés, L. (2009). Role, metabolism, chemical modifications and applications of hyaluronan. Curr Med Chem,16, 1718–45.

Downloads

Published

04/12/2024

How to Cite

RIZZATTI-BARBOSA, C. M.; DORNELLES, M. .; COSTA, A. R.; ALBERGARIA-BARBOSA, J. R. de. Viscoelasticity, cohesive energy, and viscosity of new hyaluronic acid-based fillers. Research, Society and Development, [S. l.], v. 13, n. 12, p. e71131247520, 2024. DOI: 10.33448/rsd-v13i12.47520. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/47520. Acesso em: 5 jan. 2025.

Issue

Section

Health Sciences