Radiological finding in the diagnosis of pulmonary adenocarcinoma: A bibliographical review with emphasis on high-resolution computerized tomography
DOI:
https://doi.org/10.33448/rsd-v13i12.47550Keywords:
High resolution tomography; Finds; Lung; Adenocarcinoma; Physiopathology.Abstract
The objective of the present study is to emphasize the importance of high-resolution computed tomography (HR-CT) in the early detection and characterization of lung adenocarcinomas, through a literature review study. The analysis details with HR-CT can identify lung nodules and differentiate between ground-glass opacities and solid nodules, which are crucial for determining prognosis and treatment options. In addition, it discusses the analysis of images (HR-CT) that offer valuable insights into the aggressiveness and invasiveness of tumors, highlighting the relevance of accurate diagnosis of in situ (AIS) and minimally invasive (MIA) adenocarcinomas, which have better survival rates. However, it is recognized that the differentiation between AIS, MIA, and invasive adenocarcinoma (IAD) is still challenging, requiring further studies to validate the accuracy of HR-CT in predicting tumor invasion. Finally, the discussion suggests that improvements in screening and imaging techniques may lead to more effective surgical interventions and better patient clinical outcomes.
References
Ambrosi, F., Lissenberg-Witte, B., Comans, E., Sprengers, R., Dickhoff, C., Bahce, I., Radonic, T., & Thunnissen, E. (2020). Tumor Atelectasis Gives Rise to a Solid Appearance in Pulmonary Adenocarcinomas on High-Resolution Computed Tomography. JTO clinical and research reports, 1(2), 100018. https://doi.org/10.1016/j.jtocrr.2020.100018
Carobene, L., Spina, D., Disanto, M. G., Micheletto, C., Mazzei, M. A., Paladini, P., Ghiribelli, C., Bargagli, E., & Rottoli, P. (2022). Correction to: Lung cancer and interstitial lung diseases: the lack of prognostic impact of lung cancer in IPF. Internal and emergency medicine, 17(2), 465–466. https://doi.org/10.1007/s11739-021-02859-w.
Casarin, S. T. et al. (2020). Tipos de revisão de literatura: considerações das editoras do Journal of Nursing and Health. Journal of Nursing and Health. 10 (5).
https://periodicos.ufpel.edu.br/index.php/enfermagem/article/view/19924
Cavalcante, L. T. C. & Oliveira, A. A. S. (2020). Métodos de revisão bibliográfica nos estudos científicos. Psicol. Rev. 26 (1). https://doi.org/10.5752/P.1678-9563.2020v26n1p82-100
Chen, S., Zhang, J., Li, Q., Xiao, L., Feng, X., Niu, Q., Zhao, L., Ma, W., & Ye, H. (2022). A Novel Secreted Protein-Related Gene Signature Predicts Overall Survival and Is Associated With Tumor Immunity in Patients With Lung Adenocarcinoma. Frontiers in oncology, 12, 870328. https://doi.org/10.3389/fonc.2022.870328
Dong, H., Yin, L., Lou, C., Yang, J., Wang, X., & Qiu, Y. (2022). Correlation of computed tomography quantitative parameters with tumor invasion and Ki-67 expression in early lung adenocarcinoma. Medicine, 101(25), e29373. https://doi.org/10.1097/MD.0000000000029373
Faversani, A., Favero, C., Dioni, L., Pesatori, A. C., Bollati, V., Montoli, M., Musso, V., Terrasi, A., Fusco, N., Nosotti, M., Vaira, V., & Palleschi, A. (2021). An EBC/Plasma miRNA Signature Discriminates Lung Adenocarcinomas From Pleural Mesothelioma and Healthy Controls. Frontiers in oncology, 11, 643280. https://doi.org/10.3389/fonc.2021.643280
Gao, S., Wu, Y., Li, H., Zhou, Y., Du, C., Yang, R., & Wu, Y. (2024). The predictive value of computed tomography value on high-resolution images in differentiating invasive from indolent lung adenocarcinoma. Translational cancer research, 13(1), 268–277. https://doi.org/10.21037/tcr-23-1548
Ge, L., Wang, L., & Pei, D. (2024). Pulmonary mucinous adenocarcinoma: An overview of pathophysiology and advancements in treatment. Heliyon, 10(9), e28881. https://doi.org/10.1016/j.heliyon.2024.e28881
Gu, Y., Zheng, B., Zhao, T., & Fan, Y. (2023). Computed Tomography Features and Tumor Spread Through Air Spaces in Lung Adenocarcinoma: A Meta-analysis. Journal of thoracic imaging, 38(2), W19–W29. https://doi.org/10.1097/RTI.0000000000000693
He, W., Guo, G., Du, X., Guo, S., & Zhuang, X. (2023). CT imaging indications correlate with the degree of lung adenocarcinoma infiltration. Frontiers in oncology, 13, 1108758. https://doi.org/10.3389/fonc.2023.1108758
Kawaguchi, Y., Nakao, M., Omura, K., Iwamoto, N., Ozawa, H., Kondo, Y., Ichinose, J., Matsuura, Y., Okumura, S., & Mun, M. (2020). The utility of three-dimensional computed tomography for prediction of tumor invasiveness in clinical stage IA lung adenocarcinoma. Journal of thoracic disease, 12(12), 7218–7226. https://doi.org/10.21037/jtd-20-2131
Koike, H., Ashizawa, K., Tsutsui, S., Fukuda, M., Okano, S., Matsumoto, K., Nagayasu, T., Honda, S., & Uetani, M. (2023). Surgically resected lung adenocarcinoma: do heterogeneous GGNs and part-solid nodules on thin-section CT show different prognosis?. Japanese journal of radiology, 41(2), 164–171. https://doi.org/10.1007/s11604-022-01345-3
Liu, M., Mu, J., Song, F., Liu, X., Jing, W., & Lv, F. (2023). Growth characteristics of early-stage (IA) lung adenocarcinoma and its value in predicting lymph node metastasis. Cancer imaging : the official publication of the International Cancer Imaging Society, 23(1), 115. https://doi.org/10.1186/s40644-023-00631-1
Lv, Y., Wei, Y., Xu, K., Zhang, X., Hua, R., Huang, J., Li, M., Tang, C., Yang, L., Liu, B., Yuan, Y., Li, S., Gao, Y., Zhang, X., Wu, Y., Han, Y., Shang, Z., Yu, H., Zhan, Y., Shi, F., … Ye, B. (2022). 3D deep learning versus the current methods for predicting tumor invasiveness of lung adenocarcinoma based on high-resolution computed tomography images. Frontiers in oncology, 12, 995870. https://doi.org/10.3389/fonc.2022.995870
Ninomiya, K., Yanagawa, M., Tsubamoto, M., Sato, Y., Suzuki, Y., Hata, A., Kikuchi, N., Yoshida, Y., Yamagata, K., Doi, S., Ogawa, R., Tokuda, Y., Kido, S., & Tomiyama, N. (2024). Prediction of solid and micropapillary components in lung invasive adenocarcinoma: radiomics analysis from high-spatial-resolution CT data with 1024 matrix. Japanese journal of radiology, 42(6), 590–598. https://doi.org/10.1007/s11604-024-01534-2
Ren, H., Liu, F., Xu, L., Sun, F., Cai, J., Yu, L., Guan, W., Xiao, H., Li, H., & Yu, H. (2021). Predicting the histological invasiveness of pulmonary adenocarcinoma manifesting as persistent pure ground-glass nodules by ultra-high-resolution CT target scanning in the lateral or oblique body position. Quantitative imaging in medicine and surgery, 11(9), 4042–4055. https://doi.org/10.21037/qims-20-1378
Ren, J., Wang, Y., Liu, C., Yang, L., Men, X., & Qiu, Z. (2023). Correlation analysis of clinical, pathological, imaging and genetic features of ground-glass nodule featured lung adenocarcinomas between high-risk and non-high-risk individuals. European journal of medical research, 28(1), 478. https://doi.org/10.1186/s40001-023-01462-3
Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paul. Enferm. 20 (2). https://doi.org/10.1590/S0103-21002007000200001
Salvatore, M. M., Liu, Y., Peng, B., Hsu, H. Y., Saqi, A., Tsai, W. Y., Leu, C. S., & Jambawalikar, S. (2024). Comparison of lung cancer occurring in fibrotic versus non-fibrotic lung on chest CT. Journal of translational medicine, 22(1), 67. https://doi.org/10.1186/s12967-023-04645-y
Shang, Y., Chen, W., Li, G., Huang, Y., Wang, Y., Kui, X., Li, M., Zheng, H., Zhao, W., & Liu, J. (2023). Computed Tomography-derived intratumoral and peritumoral radiomics in predicting EGFR mutation in lung adenocarcinoma. La Radiologia medica, 128(12), 1483–1496. https://doi.org/10.1007/s11547-023-01722-6
Su, Y., Zhou, H., Huang, W., Li, L., & Wang, J. (2023). The value of preoperative positron emission tomography/computed tomography in differentiating the invasive degree of hypometabolic lung adenocarcinoma. BMC medical imaging, 23(1), 31. https://doi.org/10.1186/s12880-023-00986-8
Sun, X., Chen, T., Xie, C., Liu, L., Lei, B., Wang, L., Ruan, M., Yan, H., Zhang, Q., Chang, C., & Xie, W. (2022). Relationships between SUVmax of lung adenocarcinoma and different T stages, histological grades and pathological subtypes: a retrospective cohort study in China. BMJ open, 12(5), e056804. https://doi.org/10.1136/bmjopen-2021-056804
Frontiers Editorial Office (2023). Retraction: A predictive model based on ground glass nodule features via high-resolution CT for identifying invasiveness of lung adenocarcinoma. Frontiers in surgery, 10, 1307339. https://doi.org/10.3389/fsurg.2023.1307339
Ye, T., Wu, H., Wang, S., Li, Q., Gu, Y., Ma, J., Lin, J., Kang, M., Qian, B., Hu, H., Zhang, Y., Sun, Y., Zhang, Y., Xiang, J., Li, Y., Shen, X., Wang, Z., & Chen, H. (2023). Radiologic Identification of Pathologic Tumor Invasion in Patients With Lung Adenocarcinoma. JAMA network open, 6(10), e2337889. https://doi.org/10.1001/jamanetworkopen.2023.37889
Zhang, T., Li, X., & Liu, J. (2022). Prediction of the Invasiveness of Ground-Glass Nodules in Lung Adenocarcinoma by Radiomics Analysis Using High-Resolution Computed Tomography Imaging. Cancer control : journal of the Moffitt Cancer Center, 29, 10732748221089408. https://doi.org/10.1177/10732748221089408
Zhao, Z., Yang, H., & Wang, W. (2024). The value analysis of high-resolution thin-layer CT in the identification of early lung adenocarcinoma: An observation study. Medicine, 103(37), e39608. https://doi.org/10.1097/MD.0000000000039608
Zhu, P., Xu, X. J., Zhang, M. M., & Fan, S. F. (2021). High-resolution computed tomography findings independently predict epidermal growth factor receptor mutation status in ground-glass nodular lung adenocarcinoma. World journal of clinical cases, 9(32), 9792–9803. https://doi.org/10.12998/wjcc.v9.i32.9792
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ana Ruth de Paula Souza; Isabella Braga Ferreira; Gabriel Rodrigues Molina; Marcio José Rosa Requeijo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.