Influence of activated carbon for adsorption and removal of impurities in fuel ethanol stored in stationary A36 carbon steel tanks

Authors

DOI:

https://doi.org/10.33448/rsd-v14i2.48302

Keywords:

Ethanol; Adsorption; Corrosion; Activated Carbon; Electrochemical Impedance.

Abstract

The storage of sugar-energy production is an important factor in the logistics of biofuel distribution, from the storage of products in the agroindustry to sale to the final consumer, where possible environmental impacts must be observed, as well as the quality of the product to be made available by gas stations. Waste from these processes can be the result of corrosive processes that end up accumulating over time inside these fuel tanks, altering the quality of the biofuel. Another factor considered is the economic value, that is, the financial impact due to biofuel contamination and the reduction in the effective mass of the tanks. In view of this, the evaluation of impurity removal processes, which contribute to the oxidation of fuel hydrated ethyl alcohol storage tanks, and the separation of accumulated waste not only contribute to the detection and control of changes caused in the physical-chemical specifications of the fuel, but are also of great importance in terms of environmental and economic impacts. The present research aims to verify the deviations from the standardized conformity experienced by hydrated ethanol while stored and in order to reduce the amount of material to be discarded, after separating the contaminants that promote changes in the quality of the product, deviating from legal specifications and applications. Using materials such as activated carbon, which are low cost and easy to use, it is expected to reduce the volume of product to be discarded and guarantee the quality of the recovered ethyl alcohol, adjusting it so that it meets the specifications of current legislation and is ready to be sold.

References

Alves, V. A., Da Silva, L. A., & Boodts, J. F. C. (1998). Electrochemical Impedance Spectroscopic Study of Dimensionally Stable Anode Corrosion. Journal of applied electrochemistry, 28(9), p. 899 – 905. https://doi.org/10.1023/A%3A1003431130954.

Ambrozin, P. et al. (2009). Corrosão Metálica Associada ao Uso de Combustíveis Minerais e Biocombustíveis, vol. 32.

https://doi.org/10.1590/S0100-40422009000700037.

Ambrozin, P. et al. (2010). Evaluation of Metallic Corrosion Caused by Alcohol and Same Contaminants, Materials Science Forum, Trans Tech Publications tld, Vol. 636, p. 1024 – 1029. http://dx.doi.org/10.4028/www.scientific.net/MSF.636-637.1024.

Associação Brasileira de normas Técnicas. (2007). NBR 11331: Álcool etílico – determinação da concentração de ferro e cobre – Método da espectrofotometria de absorção atômica.

Associação Brasileira de normas Técnicas. (2016). NBR 10547: Etanol combustível – Determinação de condutividade elétrica.

Associação Brasileira de normas Técnicas. (2016). NBR 5992: Etanol combustível – Determinação de massa especifica e do teor alcoólico por densímetro de vidro.

Associação Brasileira de normas Técnicas. (2018). NBR 10891: Etanol hidratado combustível – Determinação de pH – método potenciométrico.

Associação Brasileira de normas Técnicas. (2021). NBR 14883: Petróleo, derivados de petróleo e biocombustíveis – Amostragem manual.

Basques, J. C. (2016). Fotometria e Padronização, Labtest. https://labtest.com.br/publicacao/fotometria-e-padronizacao/.

Carvalho, L. A., De Andrade, A. R., & Bueno, P. R. (2006). Espectroscopia de Impedância Eletroquímica Aplicada ao Estudo das Reações Heterogêneas em Ânodos Dimensionalmente Estáveis. Química Nova, Vol. 29(4), p. 796 – 804. https://doi.org/10.1590/S0100-40422006000400029.

Casarotto, F. N., & Kopitke, B. H. (2010). Análise de investimentos: matemática financeira, engenharia econômica, tomada de decisão, estratégia empresarial. (11. ed.). Editora Atlas. xiv, 411 p. ISBN 9788522457892.

Colzato, M. (2020). Fundamentos de ICP OES. Material de Apoio, Universidade de São Paulo. https://cmaa.esalq.usp.br/fundamentos-icp-oes/.

Fuchs, W., & Sandhoff, A. G. (1942). Theory of Coal Pyrolysis. Ind. Eng. Chem., 34, 567-571. https://doi.org/10.1021/ie50389a010.

Jafari, H. et al. (2011). EIS Study of Corrosion Behavior of Metallic Materials in Ethanol Blended Gasoline Containing Water as a Contaminant. Fuel, Vol. 90, p. 1181-1187. https://doi.org/10.1016/j.fuel.2010.12.010.

Maia, D. J. (2015). Experimento sobre a Influência do pH na Corossão do Ferro. Química Nova. São Paulo, 37(1), 71 – 75.

http://dx.doi.org/10.5935/0104-8899.20150010.

Metrohm, Autolab B.V. (2023). Advanced software for electrochemical research.

https://www.metrohm.com/pt_br/suporte-e-servicos/centro-de-suporte software/nova.html.

Nascimento, R., Lima, A., Vidal, C., Melo O, D., & Raulino, G. (2014). Adsorção: Aspectos teóricos e aplicações ambientais. E-book. Fortaleza: Imprensa Universitária, 2014. 256 p.:http://www.repositorio.ufc.br/handle/riufc/10267.

Pessoa, K.D., Suarez, W.T., Dos Reis, M.F., Franco, M.O.K., Moreira, R.P.L., & Dos Santos, W.B. (2017). A digital image method of spot tests for determination of copper in sugar cane spirits. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 185, 310–316. https://doi.org/10.1016/j.saa.2017.05.072.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. http://repositorio.ufsm.br/handle/1/15824.

Prado, H. R. (2010). Qualidade dos Combustíveis no Brasil. https://qualidadeonline.wordpress.com/2010/03/03/qualidade-dos-combustiveis-no-brasil/.

Resolução ANP N° 19, de 15 de abril de 2015. https://www.in.gov.br.

Resolução ANP N° 828, de 01 de setembro de 2020. https://www.in.gov.br.

Salata, C. C., Cabelo, C., & Trinca, L. (2013). Purificação de Etanol de Mandioca com Carvão Ativado. Revista raízes e amidos tropicais. 9(1), 33-41. https://doi.org/10.17766/1808-981X.2013v9n1p33-41.

Santos, C. A., Panossian, Z., & Souza, P. G. (2010). Estudo de Corrosão em Meio Etanol, In: Associação Brasileira de Corrosão. Anais do 30° Congresso brasileiro de corrosão – INTERCORR, p. 24-28.

Sharma, S. K. (2001). Adsorptive Iron Removal from Ground Water. Tese de Doutorado, Wageningen University, The Netherlands.

Snoeyink, V. L. (1967). The Surface Chemistry of Active Carbon, A Discussion of Structure and Surface Functional Groups. Evironmental Science & Technology, The University of Michigan, p. 228-234. https://doi.org/10.1021/es60003a003.

Shitsuka, R. et al. (2014). Matemática fundamental para tecnologia. (2ed.). Editora Erica.

Souza, J. P., Mattos, O. R., Sathler, S., & Takenouti, H. (1987). Impedance Measurements of Corroding Mild Steel in an Automotive Fuel Ethanol With and Without Inhibitor in a Two and Three Electrode cell. Corrosion Science, Grã-Bretanha, 27(21), 1351-1364.

https://doi.org/10.1016/0010-938X%2887%2990130-2.

Teixeira, D. A., Valente, M. A. G. Jr., Benedetti, A. V., Feliciano, G. T., da Silva, S. C., & Fugivara, C. S. (2015). Experimental and theoretical studies of volatile corrosion inhibitors adsorption on zinc electrode. J. Braz. Chem. Soc. 26, 434–450. https://doi.org/10.5935/0103-5053.20140296 .

Wei, Q., & Tang, Y. (2018). 13C-NMR Study on Structure Evolution Characteristics of High-Organic-Sulfur Coals from Typical Chinese Areas. Minerals, 8, 49. https://doi.org/10.3390/min8020049.

Wu, J., Yuanam, X. Z., Wang, H., Blanco, M., Martin, J. J., & Zhang G. J. (2008). Diagnostic tools iin PEM fuel cell research: PART I Eletrochimical Techniques, International jornal of hydrogem energy, 33, p. 1735 – 17446. https://doi.org/10.1016/j.ijhydene.2008.01.013.

Yu, F., Huihang, Z., Deming, Z., Fuqiang, C., Xinhai X., Jiang Q., & Yi Jiao. (2023). The mechanism of ethanol blending on the variation of chemical heat sink in n-decane thermal cracking process, Fuel, Volume 353, p. 129204. https://doi.org/10.1016/j.fuel.2023.129204.

Published

26/02/2025

How to Cite

ALONSO, R. V.; TEIXEIRA, V. L. dos S.; OLIVEIRA, G. C. de; FARIA, R. A. P. G. de; CORINGA, J. do E. S.; TEIXEIRA, D. A. Influence of activated carbon for adsorption and removal of impurities in fuel ethanol stored in stationary A36 carbon steel tanks. Research, Society and Development, [S. l.], v. 14, n. 2, p. e12414248302, 2025. DOI: 10.33448/rsd-v14i2.48302. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/48302. Acesso em: 30 mar. 2025.

Issue

Section

Exact and Earth Sciences