Coagulación y oxidación avanzada en la remoción de contaminantes y resistencia antibiótica en aguas residuales domésticas
DOI:
https://doi.org/10.33448/rsd-v14i3.48570Palabras clave:
Agua residual; Coagulación; Catalizador; Oxidación avanzada; Resistencia antibiótica.Resumen
Se evaluó el agua efluente de lagunas de oxidación en Calceta, Ecuador, y su tratamiento posterior mediante oxidación avanzada. El objetivo fue evaluar la eficiencia de la zeolita como catalizador en el proceso de oxidación avanzada para mitigar bacterias resistentes a los antibióticos en aguas residuales domésticas. Se caracterizaron los parámetros físico-químicos del efluente de la laguna de oxidación antes y después de los tratamientos, como pH, turbidez, sólidos totales (ST), sólidos suspendidos (SS) y conductividad eléctrica (CE). Se aplicaron quince tratamientos de oxidación avanzada, variando los tiempos de ozonificación y las dosis de zeolita y peróxido de hidrógeno (H₂O₂). Los resultados mostraron que los tratamientos con ozono y H₂O₂, combinados con zeolita, lograron una reducción significativa de contaminantes. Se alcanzó una reducción del 99.99% en el crecimiento de coliformes totales. Los tratamientos también fueron eficaces en la remoción de color (hasta un 92.59%) y la reducción de la turbidez (hasta un 93.06%). A pesar de estos resultados, los microorganismos aislados fueron resistentes a la bacitracina y ampicilina, pero mostraron sensibilidad a amikacina y levofloxacina, con zonas de inhibición que llegaron a 34 mm.
Citas
Abdulbaqi, A., Alhejely, A. y Radwan, O. (2024). Microbiological analysis of household water tanks in egypt. American Journal of Life Science and Innovation , 3(2), 51-56. https://doi.org/10.54536/ajlsi.v3i2.3154
Abujazar, M. S. S., Karaağaç, S. U., Abu Amr, S. S., Alazaiza, M. Y. D. y Bashir, M. JK. (2022). Recent advancement in the application of hybrid coagulants in coagulation-flocculation of wastewater: A review. Journal of Cleaner Production, 345, 131133. https://doi.org/10.1016/j.jclepro.2022.131133
Akbari, M. Z., Xu, Y., Lu, Z. y Peng, L. (2021). Review of antibiotics treatment by advance oxidation processes. Environmental Advances, 5, 100111. https://doi.org/10.1016/j.envadv.2021.100111
Akinnawo, S. O., Ayadi, P. O. y Oluwalope, M. T. (2023). Chemical coagulation and biological techniques for wastewater treatment. Ovidius University Annals of Chemistry, 34(1), 14–21. https://doi.org/10.2478/auoc-2023-0003
Al-Anzi, B. S., Naik, M. y Ahmad, M. (2022). The Imperative Need of Metal Salt for the Treatment of Industrial Wastewater via the Synergic Coagulation-Flocculation Method. Polymers, 14(9), Article 9. https://doi.org/10.3390/polym14091651
Alhamadani, Y. y Oudah, A. (2022). Study of the Bacterial Sensitivity to different Antibiotics which are isolated from patients with UTI using Kirby-Bauer Method. Journal of Biomedicine and Biochemistry, 1004. https://doi.org/10.57238/jbb.2022.19387
Amadou, Z., Mendret, J., Lesage, G., Zaviska, F. y Brosillon, S. (2021). Removal of organic micropollutants from domestic wastewater: The effect of ozonebased advanced oxidation process on nanofiltration. Journal of Water Process Engineering, 39. https://doi.org/10.1016/j.jwpe.2020.101869
Anjali, R. y Shanthakumar, S. (2019). Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes. Journal of Environmental Management, 246, 51–62. https://doi.org/10.1016/j.jenvman.2019.05.090
Asghari, F., Dehghani, M., Dehghanzadeh, R., Farajzadeh, D., Shanehbandi, D., Mahvi, H., Yaghmaeian, K. y Rajabi, A. (2021). Performance evaluation of ozonation for removal of antibiotic-resistant Escherichia coli and Pseudomonas aeruginosa and genes from hospital wastewater. Scientific Reports, 11(1), 24519. https://doi.org/10.1038/s41598-021-04254-z
Azanaw, A., Birlie, B., Teshome, B. y Jemberie, M. (2022). Textile effluent treatment methods and eco-friendly resolution of textile wastewater. Case Studies in Chemical and Environmental Engineering, 6, 100230. https://doi.org/10.1016/j.cscee.2022.100230
Babu, A., Sinha, S., Ashokan, H., V Paul, M., Hariharan, S. P., Arun, J., Gopinath, K. P., Hoang Le, Q. y Pugazhendhi, A. (2023). Advanced oxidation process (AOP) combined biological process for wastewater treatment: A review on advancements, feasibility and practicability of combined techniques. Environmental Research, 237, 116944. https://doi.org/10.1016/j.envres.2023.116944
Bahrodin, M. B., Zaidi, N. S., Hussein, N., Sillanpää, M., Prasetyo, D. D. y Syafiuddin, A. (2021). Recent Advances on Coagulation-Based Treatment of Wastewater: Transition from Chemical to Natural Coagulant. Current Pollution Reports, 7(3), 379–391. https://doi.org/10.1007/s40726-021-00191-7
Bailón, E., Banchón, C. y Córdova, A. (2023). Control de la resistencia antibiótica microbiana mediante procesos de oxidación avanzada, Manta -Ecuador. Revista ESPAMCIENCIA ISSN 1390-8103, 14(2), 71-77. https://doi.org/10.51260/revista_espamciencia.v14i2.404
Banchón, C. (2022). Antarctic granite rocks as wastewater surfactant degradation catalysts. Marine Pollution Bulletin, 185, 114356. https://doi.org/10.1016/j.marpolbul.2022.114356
Banchón, C., Cañas, R., Baldeón, H. y Córdova, A. (2024). Activated carbon-mediated advanced oxidation process for effective leachate treatment. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-024-05641-5
Banchón, C., Sigcha, P., Gavilanes, P. y Córdova, A. (2022). Zeolite and Activated Carbon as Catalysts on Leachate Clarification. Environmental Research, Engineering and Management, 78(4), Article 4. https://doi.org/10.5755/j01.erem.78.4.31712
Baumler, S. M., V, W. H. H. y Allen, H. C. (2019). Hydration of ferric chloride and nitrate in aqueous solutions: Water-mediated ion pairing revealed by Raman spectroscopy. Physical Chemistry Chemical Physics, 21(35), 19172–19180. https://doi.org/10.1039/C9CP01392J
Bracamontes, A. R., Ordaz, L. A., Bailón, A. M., Ríos, J. C., Reyes, Y. y Reynoso, L. (2022). Emerging Pollutants in Wastewater, Advanced Oxidation Processes as an Alternative Treatment and Perspectives. Processes, 10(5), Article 5. https://doi.org/10.3390/pr10051041
Cambarihan, S. D., Patricio, E. R. P. y Lumogdang, L. P. (2022). Detection and Enumeration of Coliforms in Drinking Water Sources in the Selected Barangay in Santa Maria, Davao Occidental Philippines. Asian Journal of Biology, 15(1), 1–7. https://doi.org/10.9734/ajob/2022/v15i130227
Canan, G., Barreiros, M. A. B., Lima, A. O. S., Bauda, P., Sanches, E., Pimentel, W., Ariente, R., Somensi, C. A., Almeida, T. C. M., Corrêa, R. yy Radetski, C. M. (2024). Characterization of bacterial resistance in treated hospital wastewater. Environmental Technology, 45(1), 120–128. https://doi.org/10.1080/09593330.2022.2100282
Castillo, J. y Chimbo, J. (2021). Efficiency in the removal of organic matter by wormfilters (Eisenia foetida) in domestic wastewater for rural areas. Enfoque UTE, 12(2), 80-99. https://doi.org/10.29019/enfoqueute.746
Castro, M. (2019). Biostatistics applied in clinical research: basic concepts. Revista Médica Clínica Las Condes, 30(1), 50-65. https://doi.org/10.1016/j.rmclc.2018.12.002
Clinical and Laboratory Standards Institute (CLSI). (2020). Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100. https://www.who.int/es/news-room/fact-sheets/detail/antibiotic-resistance
Chen, Y., Duan, X., Zhou, X., Wang, R., Wang, S., Ren, N. y Ho, S.-H. (2021). Advanced oxidation processes for water disinfection: Features, mechanisms and prospects. Chemical Engineering Journal, 409, 128207. https://doi.org/10.1016/j.cej.2020.128207
Dhrubo, A. A. K., Jannat, M. y Hossain, Md. S. (2023). Enhancing the performance of coagulants for wastewater treatment by varying and optimizing the experimental parameters. Journal of Water Process Engineering, 55, 104144. https://doi.org/10.1016/j.jwpe.2023.104144
Espitia, A., Barrón, F., Quintana, B., Herrera, H., Soto, R. y González, G. (2021). Performance of a demonstrative (scale-pilot) double advanced oxidation wastewater treatment plant to treat discharges from a small community in Morelia, Michoacán, México. Journal of Environmental Science and Engineering, 10, 1-8. https://www.davidpublisher.com/Public/uploads/Contribute/605aee181ba81.pdf
Fouad, H., Hefny, R., Kamel, A., El-Liethy, M. y Hemdan, B. (2020). Bioaugmentation and advanced oxidation process for organic and inorganic pollutants removal and pathogenic bacteria inactivation,s for El-Rahawy Drain, Egypt. Egyptian Journal of Chemistry, 63(10), 4075-4082. https://journals.ekb.eg/article_116875.html
García, J., García, M. J., Day, J. W., Boopathy, R., White, J. R., Wallace, S. y Hunter, R. G. (2020). A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts. Bioresource Technology, 307, 123228. https://doi.org/10.1016/j.biortech.2020.123228
Hassan, A. (2017). Comparison between field research and controlled laboratory research. Archives of Clinical and Biomedical Research, 1(2), 101-104. https://cdn.fortuneonline.org/articles/comparison-between-field-research-and-controlled-laboratory-research.pdf
Hassan, M. A., Abd El-Aziz, S., Elbadry, H. M., El-Aassar, S. A. y Tamer, T. M. (2022). Prevalence, antimicrobial resistance profile, and characterization of multi-drug resistant bacteria from various infected wounds in North Egypt. Saudi Journal of Biological Sciences, 29(4), 2978–2988. https://doi.org/10.1016/j.sjbs.2022.01.015
Ilurdoz, M., Sadhwani, J. y Reboso, J. (2022). Antibiotic removal processes from water & wastewater for the protection of the aquatic environment—A review. Journal of Water Process Engineering, 45, 102474. https://doi.org/10.1016/j.jwpe.2021.102474
Irfan, M., Almotiri, A. y AlZeyadi, Z. A. (2023). Antimicrobial Resistance and β-Lactamase Production in Clinically Significant Gram-Negative Bacteria Isolated from Hospital and Municipal Wastewater. Antibiotics, 12(4), Article 4. https://doi.org/10.3390/antibiotics12040653
Jadabi, N. A., Laaouan, M., Mabrouki, J. y Hajjaji, S. E. (2020). Study of the Efficacy of Coagulation-flocculation Process in Domestic Wastewater Treatment Plant (WWTP) From the City of Hattane (MOROCCO). Journal of Advanced Research in Dynamic and Control Systems, Volume 12(Issue 7), 147–157. https://doi.org/10.5373/JARDCS/V12I7/20201995
Juela, D., Vera, M., Cruzat, C., Alvarez, X. y Vanegas, E. (2021). Adsorption properties of sugarcane bagasse and corn cob for the sulfamethoxazole removal in a fixed-bed column. Sustainable Environment Research, 31(1), 27. https://doi.org/10.1186/s42834-021-00102-x
Karahan, B., Akdag, Y., Fakioglu, M., Korkut, S., Guven, H., Ersahin, M. y Ozgun, H. (2023). Coupling ozonation with hydrogen peroxide and chemically enhanced primary treatment for advanced treatment of grey water. Journal of Environmental Chemical Engineering, 11(3), 110116. https://doi.org/10.1016/j.jece.2023.110116
Kokkinos, P., Venieri, D. y Mantzavinos, D. (2021). Advanced oxidation processes for water and wastewater viral disinfection. A systematic review. Food and Environmental Virology, 13, 283-302. https://doi.org/10.1007/s12560-021-09481-1
Kumar, A. y Pal, D. (2018). Antibiotic resistance and wastewater: Correlation, impact and critical human health challenges. Journal of Environmental Chemical Engineering, 6(1), 52–58. https://doi.org/10.1016/j.jece.2017.11.059
Liu, B., Zhang, S. y Chang, C.-C. (2019). Emerging pollutants—Part II: Treatment. Water Environment Research, 91(10), 1390–1401. https://doi.org/10.1002/wer.1233
López, M., Castellanos, O., Lango, F., Castañeda, M., Montoya, J., Sosa, C. y Ortiz, B. (2021). Oxidación avanzada como tratamiento alternativo para las aguas residuales. Una revisión. Enfoque UTE, 12(4), 76-87. https://doi.org/10.29019/enfoqueute.769
Lorenzo, P., Adriana, A., Jessica, S., Carles, B., Marinella, F., Marta, L., Luis, B. J. y Pierre, S. (2018). Antibiotic resistance in urban and hospital wastewaters and their impact on a receiving freshwater ecosystem. Chemosphere, 206, 70–82. https://doi.org/10.1016/j.chemosphere.2018.04.163
Ma, D., Yi, H., Lai, C., Liu, X., Huo, X., An, Z., Li, L., Fu, Y., Li, B., Zhang, M., Qin, L., Liu, S. y Yang, L. (2021). Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere, 275, 130104. https://doi.org/10.1016/j.chemosphere.2021.130104
Manoharan, R. K., Ishaque, F. y Ahn, Y.-H. (2022). Fate of antibiotic resistant genes in wastewater environments and treatment strategies—A review. Chemosphere, 298, 134671. https://doi.org/10.1016/j.chemosphere.2022.134671
Mkhwanazi, F., Mazibuko, T., Mosoma, O., Rathebe, M. y Patel, M. (2024). Comparison of PetrifilmTM AC and pour plate techniques used for the heterotrophic aerobic bacterial count in water. FEMS Microbiology Letters, 371, fnae029. https://doi.org/10.1093/femsle/fnae029
Monteoliva, A., Martín, J., Muñío, M. y Poyatos, J. (2020). Effects of carrier addition on water quality and pharmaceutical removal capacity of a membrane bioreactor – Advanced oxidation process combined treatment. Science of The Total Environment, 708. https://doi.org/10.1016/j.scitotenv.2019.135104
Norma Técnica Ecuatoriana INEN. (2013). Agua. Calidad del agua. Muestreo. Técnicas de muestreo. https://gestionambiental.pastaza.gob.ec/biblioteca/legislacion-ambiental/patrimonio_natural/nte_inen_2176_1_agua_calidad_agua_muestreo_tecnicas_muestreo.pdf
Nuñez, A. W. P.-, Palacio, K. M. Z., Campos, A. Z. G., Salinas, J. A. F., Pisfil, J. A. M., Farfan, R. E. S., Perez, S. A. T., Paz, A. A. y García, J. A. P. (2023). Optimization of the Coagulation-flocculation Process Using Ferric Chloride and Phosphate for the Reduction of Contaminants in the Slaughterhouses Wastewater. International Journal of Membrane Science and Technology, 10(3), 1536-154. https://doi.org/10.15379/ijmst.v10i3.1754
Organización Mundial de la Salud [OMS]. (2020). Resistencia a los antibióticos. https://www.who.int/es/news-room/fact-sheets/detail/antibiotic-resistance
Papajová, I., Šmigová, J., Gregová, G., Šoltys, J., Venglovský, J., Papaj, J., Szabóová, T., Dančová, N., Ihnacik, L., Schusterová, I., Sušinková, J., Raková, J. y Regecová, I. (2022). Effect of Wastewater Treatment on Bacterial Community, Antibiotic-Resistant Bacteria and Endoparasites. International Journal of Environmental Research and Public Health, 19(5), Article 5. https://doi.org/10.3390/ijerph19052750
Pazda, M., Kumirska, J., Stepnowski, P. y Mulkiewicz, E. (2019). Antibiotic resistance genes identified in wastewater treatment plant systems – A review. Science of The Total Environment, 697, 134023. https://doi.org/10.1016/j.scitotenv.2019.134023
Pérez, V., Mesa, J. M., Ortega, F. y Villanueva, J. (2021). Gross Solids Content Prediction in Urban WWTPs Using SVM. Water, 13(4), Article 4. https://doi.org/10.3390/w13040442
Perulli, G., Gaggia, F., Manfrini, L., Gioia, D., Toscano, A. y Morandi, B. (2024). The fate of bacteria in urban wastewater-irrigated peach tree: a seasonal evaluation from soil to canopy. Scientia Horticulturae, 323, 112520. https://doi.org/10.1016/j.scienta.2023.112520
Prathna, T. C. y Srivastava, A. (2020). Ferric chloride for odour control: Studies from wastewater treatment plants in India. Water Practice and Technology, 16(1), 35–41. https://doi.org/10.2166/wpt.2020.111
Programa de las Naciones Unidas para los Asentamientos Humanos [ONU-Hábitat] y Organización Mundial de la Salud [OMS]. (2021). Progreso en el tratamiento de las aguas residuales: Estado mundial y necesidades de aceleración del indicador 6.3.1. de los ODS. https://unhabitat.org/sites/default/files/2021/10/sdg6_indicator_report_631_progress-on-wastewater-treatment_2021_es.pdf
Puentes, G. (2024). Research and Publish. 3. How to Conduct a Statistical Analysis of Research. Revista colombiana de Gastroenterología, 39(3), 296-301. https://doi.org/10.22516/25007440.1265
Robles, L. E., Aranda, E., Castelan, O. A., Shettino, B. S., Ortiz, R., Miranda, M., Li, X., Angeles-Hernandez, J. C., Vargas-Bello-Pérez, E. y Gonzalez-Ronquillo, M. (2022). Worldwide Traceability of Antibiotic Residues from Livestock in Wastewater and Soil: A Systematic Review. Animals, 12(1), Article 1. https://doi.org/10.3390/ani12010060
Rodrigues, P., Luís, J. y Tavaria, F. (2022). Image analysis semi-automatic system for colony-forming-unit counting. Bioengineering, 9(7), 271. https://doi.org/10.3390/bioengineering9070271
Saima, S., Fiaz, M., Manzoor, M., Zafar, R., Ahmed, I., Nawaz, U. y Arshad, M. (2020). Molecular investigation of antibiotic resistant bacterial strains isolated from wastewater streams in Pakistan. 3 Biotech, 10(9), 378. https://doi.org/10.1007/s13205-020-02366-3
Saraireh, H., Lagum, A. A. y Oudat, A. (2022). Occurrence of microorganisms in treated wastewater effluent and their impact on the surface and groundwater resources. Journal of Civil and Environmental Research, 14(5), https://doi.org/12-27.10.7176/CER/14-5-02
Sathya, U., Nithya, M. y Balasubramanian, N. (2019). Evaluation of advanced oxidation processes (AOPs) integrated membrane bioreactor (MBR) for the real textile wastewater treatment. Journal of Environmental Management, 246, 768-775. https://doi.org/10.1016/j.jenvman.2019.06.039
Silva, A. C., Nogueira, P. J. y Paiva, J.-A. (2021). Determinants of Antimicrobial Resistance among the Different European Countries: More than Human and Animal Antimicrobial Consumption. Antibiotics, 10(7), 834. https://doi.org/10.3390/antibiotics10070834
Stange, C., Sidhu, J. P. S., Toze, S. y Tiehm, A. (2019). Comparative removal of antibiotic resistance genes during chlorination, ozonation, and UV treatment. International Journal of Hygiene and Environmental Health, 222(3), 541–548. https://doi.org/10.1016/j.ijheh.2019.02.002
Thakur, T. K., Barya, M. P., Dutta, J., Mukherjee, P., Thakur, A., Swamy, S. L. y Anderson, J. T. (2023). Integrated Phytobial Remediation of Dissolved Pollutants from Domestic Wastewater through Constructed Wetlands: An Interactive Macrophyte-Microbe-Based Green and Low-Cost Decontamination Technology with Prospective Resource Recovery. Water, 15(22), Article 22. https://doi.org/10.3390/w15223877
Tunç, M. S. (2020). Co-pretreatment of Municipal Wastewater and Landfill Leachate by Chemical Coagulation Using Ferric Chloride and Aluminum Sulfate. Gazi University Journal of Science, 33(4), Article 4. https://doi.org/10.35378/gujs.645757
Wang, H., Mustafa, M., Yu, G., Östman, M., Cheng, Y., Wang, Y. y Tysklind, M. (2019). Oxidation of emerging biocides and antibiotics in wastewater by ozonation and the electro-peroxone process. Chemosphere, 235, 575-585. https://doi.org/10.1016/j.chemosphere.2019.06.205
Wang, X., Jing, J., Zhou, M. y Dewil, R. (2023). Recent advances in H2O2-based advanced oxidation processes for removal of antibiotics from wastewater. Chinese Chemical Letters, 34(3), 107621. https://doi.org/10.1016/j.cclet.2022.06.044
Wang, Y., Gao, Y., Chu, W., Zhao, D., Chen, F., Zhu, X., & Xu, L. (2019). Synthesis and catalytic application of FER zeolites with controllable size. Journal of Materials Chemistry A, 7(13), 7573-7580. https://doi.org/10.1039/C8TA09420A
Yadav, C. K. y Yadav, B. (2020). Measurement of Conductance of FeCl3 in Distilled Water at Different Temperature and Concentration. Rupantaran: A Multidisciplinary Journal, 3, 10–16. https://doi.org/10.3126/rupantaran.v3i0.31735
Zhang, B., Zhou, Z., Cao, W., Qi, X., Xu, C. y Wen, W. (2022). A new few-shotLearning method of bacterial colony counting based on the edge computing device. Biology, 11(2), 156. https://doi.org/10.3390/biology11020156
Zhou, P., Wang, F., Shen, Y., Duan, X., Zhao, S., Chen, X. y Liang, J. (2024). Removal of Emerging Organic Pollutants by Zeolite Mineral (Clinoptilolite) Composite Photocatalysts in Drinking Water and Watershed Water. Catalysts, 14(4), Article 4. https://doi.org/10.3390/catal14040216
Zhu, T., Su, Z., Lai, W., Zhang, Y. y Liu, Y. (2021). Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology. Science of The Total Environment, 776, 145906. https://doi.org/10.1016/j.scitotenv.2021.145906
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Melany Alcívar; Gema Bravo; Carlos Banchón

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.