Uma abordagem do uso de microbiologia preditiva para formação de biofilmes

Autores

DOI:

https://doi.org/10.33448/rsd-v9i8.5117

Palavras-chave:

Análise bibliométrica; Células planctônicas; Células sésseis; Controle de qualidade; Predição microbiana.

Resumo

É necessário garantir a qualidade e a segurança dos alimentos durante todas as etapas da produção de alimentos. O grande desafio no setor de alimentos é o controle da multiplicação microbiana, pois os microrganismos estão buscando alternativas, que envolvem o seu desenvolvimento tanto na forma livre quanto em biofilmes, para sobreviver a ataques ambientais. Devido a essa preocupação, os pesquisadores usam novas estratégias para entender a dinâmica do crescimento microbiano. Nesse contexto, a microbiologia preditiva está ganhando espaço na microbiologia de alimentos. O objetivo do estudo foi verificar se os atuais modelos preditivos são adequados para prever também o crescimento de células sésseis além das planctônicas. Realizou-se um levantamento bibliográfico sobre a aplicação da microbiologia preditiva na avaliação do controle de segurança alimentar e concluiu-se que, devido à escassez de estudos, não foi possível afirmar a adequação de modelos terciários no controle de biofilmes durante a produção de alimentos. Destaca-se a necessidade de estudos que possam modelar a formação de biofilme de patógenos sob diferentes fatores ambientais.

Referências

Akkermans, S., &Impe, J. F. V. (2018). Mechanistic modelling of the inhibitory effect of pH on microbial growth. Food Microbiology, 72, 214-219.

Akkermans, S., Jaskula-Goiris, B., Logist, F., &Impe, J. F. V. (2018). Including experimental uncertainty on the independent variables when modelling microbial dynamics: The combined effect of pH and acetic acid on the growth rate of E. coli K12. Journal of Microbiological Methods, 149, 20-28.

Baka, M., Verheyen, D., Cornette, N., Vercruyssen, S., & IMPE, J. F. V. (2017). SalmonellaTyphimurium and Staphylococcus aureus dynamics in/on variable (micro)structures of fish-based model systems at suboptimal temperatures. International Journal of Food Microbiology, 240, 32-39.

Baranyi, J., & Roberts, T. A. (1995). Mathematics of predictive microbiology. International Journal of Food Microbiology, 26, 199-218.

Boatemaa, S., Barney, M., Drimie, S., Harper, J., Korsten, L., & Pereira, L. (2019). Awakening from the listeriosis crisis: Food safety challenges, practices and governance in the food retail sector in South Africa. Food Control, 104, 333-342.

Bräutigam, K. R., Jörissen, J., &Priefer, C. (2014). The extent of food waste generation across EU-27: Different calculation methods and the reliability of their results. Waste Management &Research, 32(8), 683-694.

Ciccio, P. D., Vergara, A., Festino, A. R., Paludi, D., Zanardi, E., Ghidini, S., &Lanieri, A. (2015). Biofilm formation by Staphylococcus aureus on food contact surfaces: Relationship with temperature and cell surface hydrophobicity. Food Control, 50, 930-936.

Diallo, M. A., &Bogaerts, P. (2016). Dynamic microorganism growth modelling for shelf life prediction: application to cooked and brined shrimps. IFAC-PapersOnLine, 49-7, 230-235.

Dimakopoulou-Papazoglou, D., Lianou, A., &Koutsoumanis, K. P. (2016). Modelling biofilm formation of Salmonella enterica ser. Newport as a function of pH and water activity. Food Microbiology, 53, 76-81.

Ferrer, J., Prats, C., López, D., & REGO, J. V. (2009). Mathematical modelling methodologies in predictive food microbiology: A SWOT analysis. InternationalJournalofFoodMicrobiology, 134, 2-8.

Forsythe, S. J. (2013). Microbiologia da segurança dos alimentos. (2ª ed.). Porto Alegre: Artmed.

Fukuda, K. (2015). Food safety in a globalized world. Bulletin of the World Health Organization, 93, 212.

Giaouris, E., Heir, E., Hébraud, M., Chorianopoulos, N., Langsrud, S., Møretrø, T., Habimana, O., Desvaux, M., Renier, S., &Nychas, G. J. (2014). Attachment and biofilm formation by foodborne bacteria in meat processing environments: Causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Science, 97, 298-309.

González, S. C., Possas, A., Carrasco, E., Valero, A., Bolívar, A., Posada-Izquierdo, G. D., García-Gimeno, R. M., Zurera, G., & Pérez-Rodríguez, F. (2019). ‘MicroHibro’: A software tool for predictive microbiology and microbial risk assessment in foods. International Journal of Food Microbiology, 290, 226-236.

Guillier, L. (2016). Predictive microbiology models and operational readiness. Procedia Food Science, 7, 133-136.

Gutiérrez, D., Rodríguez-Rubio, L., Martínez, B., Rodríguez, A., & García, P. (2016). Bacteriophages as weapons against bacterial biofilms in the food industry. Frontiers in Microbiology, 7.

Gunvig, A., Andresen, M. S., Jacobsen, T., &Borggaard, C. (2018). Staphtox predictor - A dynamic mathematical model to predict formation of Staphylococcus enterotoxin during heating and fermentation of meat products. International Journal of Food Microbiology, 285, 81-91.

Huang, L. (2014). IPMP 2013 – A comprehensive data analysis tool for predictive microbiology. International Journal of Food Microbiology, 171, 100-107.

Latorre, A. A., Van Kessel, J. S., Karns, J. S., Zurakowsk, M. J., Pradhan, A. K., Boor, K. J., Jayarao, B. M., Houser, B. A., Daugherty, C. S. &Schukken, Y. H. (2010). Biofilm in milking equipment on a dairy farm as a potential source of bulk tank milk contamination with Listeria monocytogenes. Journal of Dairy Science, 93(6), 2792-2802.

Lee, Y. J., Jung, B. S., Kim, K. T., & Paik, H. D. (2015). Predictive model for the growth kinetics of Staphylococcus aureus in raw pork developed using Integrated Pathogen Modelling Program (IPMP) 2013. Meat Science, 107, 20-25.

Marino, M., Maifreni, M., Baggio, A., &Innocente, N. (2018). Inactivation of foodborne bacteria biofilms by aqueous and gaseous ozone. Frontiers in Microbiology, 9, 1-12.

Mcmeekin, T. A., Bowman, J., Mcquestin, O., Mellefont, L., Ross, T., &Tamplin, M. (2008). The future of predictive microbiology: strategic research, innovative applications and great expectations. International Journal of Food Microbiology, 128, 2-9.

Messens, W., Hempen, M., &Koutsoumanis, K. (2018). Use of predictive modelling in recent work of the panel on biological hazards of the European Food Safety Authority. Microbial Risk Analysis, 10, 37-43.

Mogha, K. V., Shah, N. P., Prajapati, J. B., &Chaudhari, A. R. (2014). Biofilm - A threat to dairy industry. Indian J. Dairy Sci., 67(6), 459-466.

Moraes, J. O., Cruz, E. A., Souza, E. G. F., Oliveira, T. C. M., Alvarenga, V. O., Peña, W. E. L., Sant’Ana, A. S., &Magnani, M. (2018). Predicting adhesion and biofilm formation boundaries on stainless steel surfaces by five Salmonella enterica strains belonging to different serovars as a function of pH, temperature and NaCl concentration. International Journal of Food Microbiology, 281, 90-100.

Plaza-Rodriguez, C., Haberbeck, L. U., Desvignes, V., Dalgaard, P., Sanaa, M., Nauta, M., Filter, M., &Guillier, L. (2018). Towards transparent and consistent exchange of knowledge for improved microbiological food safety. Current Opinion in Food Science, 19, 129-137.

Tango, C. N., Akkermans, S., Hussain, M. S., Khan, I., Impe, J. V., Jin, Y. G., & Oh, D. H. (2018). Modelling the effect of pH, water activity, and ethanol concentration on biofilm formation of Staphylococcus aureus. Food Microbiology, 76, 287-295.

Tenenhaus-Aziza, F., &Ellouze, M. (2015). Software for predictive microbiology and risk assessment: A description and comparison of tools presented at the ICPMF8 Software Fair. Food Microbiology, 45, 290-299.

Xu, Z., Xie, J., Soteyome, T., Peters, B. M., Shirtlif, M. E., Liu, J., &Harro, J. M. (2019). Polymicrobial interaction and biofilms between Staphylococcus aureus and Pseudomonas aeruginosa: an underestimated concern in food safety. Current Opinion in Food Science, 26, 57-64.

Zhang, Y., Li, G., Wu, D., Li, X., Yu, Y., Luo, P., Chen, J., Dai, C., & Wu, Y. (2019). Recent advances in emerging nanomaterials based food sample pretreatment methods for food safety screening. Trends in AnalyticalChemistry, 121, 115669.

Downloads

Publicado

25/06/2020

Como Citar

RUMÃO, J. da S.; REINEHR, C. O. Uma abordagem do uso de microbiologia preditiva para formação de biofilmes. Research, Society and Development, [S. l.], v. 9, n. 8, p. e90985117, 2020. DOI: 10.33448/rsd-v9i8.5117. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/5117. Acesso em: 17 jun. 2025.

Edição

Seção

Artigos de Revisão