Efficiency of mechanical extraction of Moringa oleifera according to different grain drying conditions
DOI:
https://doi.org/10.33448/rsd-v9i7.5133Keywords:
processing; agricultural products; oil yieldAbstract
Moringa oleifera Lam. is a drought-resistant plant and able to survive in poor soils, obtaining up to three harvests per year. This culture has wide employability in the cosmetics, medicinal, food industry and also as a potential for water purification. Despite its widespread use, there are few studies on its processing. Thus, the objective of this work was to study the behavior during the drying process, at the drying air temperatures of 40 ºC, 55 ºC and 70 ºC, applying mathematical models to the experimental data, thus selecting the best model according to the kinetics curves of drying, as well as evaluating the effect of this phenomenon on the efficiency of mechanical oil extraction. Pre-dried Moringa oleifera Lam. grains from the city of Barreirinhas (MA) were used, the second semester of 2018 and the experiment conducted at the Agricultural Engineering Department of the Federal University of Lavras (MG). Artificial drying was carried out to a constant grain mass, using a mechanical laboratory dryer in a fixed layer with forced convection, at an air speed of 0.33 ms-1, with controlled drying air temperatures of 40 °C, 55 °C, and 70 °C. Non-linear regression analysis was performed using the Quasi-Newton method to adjust 11 mathematical models to experimental data. The oil was extracted using an expeller-type mechanical press. The press yield and efficiency were calculated from the difference in lipid content obtained by the initial chemical extraction of the grain and residual of the pie. The Exponential Equation of Two Terms was the one that best suited the experimental data for all drying air temperatures. The increase in the temperature of the drying air caused greater volumetric contraction of the moringa grains, which affected the oil extraction yield, resulting in lower efficiency of the mechanical press.
References
Abreu, C. T., Araújo, B. L. O., Andrade, E. T., Garcia, C. G., Barbosa, M. L. O., & Silva, R. J. P. S. (2019). Modelagem matemática da higroscopicidade dos grãos de Moringa oleifera Lam. In Proceedings of the XXXII Congresso de Iniciação Científica, Lavras.
Agustini, M. A. B., Wendt, L., Paulus, C., Malavasi, M. M., & Gusatto, F. C. (2015). Maturidade fisiológica de sementes de Moringa oleifera Lam. Revista Inova Ciência & Tecnologia, 8, 267-278.
Almeida, F. N., Htoo, J. K. ; Thomson, J., & Stein, H. H. (2013). Amino acid digestibility in camelina products fed to growing pigs. Canadian Journal of Animal Science, 93(3), 335–343.
Alves, M. C. S., Medeiros Filho, S., Bezerra, A. M. E., & Oliveira, V. C. (2005). Germinação de sementes e desenvolvimento de plântulas de Moringa oleifera L. em diferentes locais de germinação e submetidas à pré-embebição. Ciência e Agrotecnologia, 29(5), 1083-1087.
Amaglo, N. K., Bennett, R. N., Lo Curto, R. B., Rosa, E. A. S., Lo Turco, V., Giuffrida, A., Lo Curto, A., Crea, F., & Timpo, G. M. (2010). Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grownin Ghana. Food Chemistry, 122, 1047–1054.
Anwar, F., & Bhanger, M. I. (2003). Analytical characterization of Moringa oleifera seed oil grown in temperate regions of Pakistan. Journal of Agriculture and Food Chemistry, 51, 6558-6563.
Anwar, F., Latif, S., Ashraf, M., & Gilani, A. H. (2007). Moringa oleifera: A food plant with multiple medicinal uses. Phytotherapy Research, 21, 17-25.
Araújo, W. D., Goneli, A. L. D., Corrêa, P. C., Hartmann Filho, C. P., & Martins, E. A. S. (2017). Modelagem matemática da secagem dos frutos de amendoim em camada delgada. Revista Ciência Agronômica, 48(3), 448-457.
Atawodi, J. C., Idakwo, G. A., Pfundstein, B., Haubner, R., Wurtele, G., Bartsch, H., & Owen, R. W. (2010). Evaluation of the polyphenol content and antioxidante properties of methanol extracts of the leaves, stem, root barks of Moringa oleifera Lam. Journal of Medicinal Food, 13, 710-716.
Boukandoul, S., Casal, S., Cruz, R., Pinho, C., & Zaidi, F. (2017). Algerian Moringa oleifera whole seeds and kernels oils: Characterization, oxidative stability, and antioxidant capacity. European Journal of Lipid Science and Technology, 119(10), 1600410.
Brasil (2009). Regra para Análises de Sementes. MAPA/ACS: Brasília, Brasil.
Corrêa, P. C., Resende, O., Garin, S. A., Jaren, C., & Oliveira, G. H. H. (2011) Mathematical models to describe the volumetric shrinkage rate of red beans during drying. Engenharia Agrícola, 31(4), 716-726.
Elhussein, E. A. A., & Şahin, S. (2018). Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods. Heat and Mass Transfer, 54(7), 1901-1911.
Ferreira, D. F. (2014) Sisvar: a Guide for its Bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, 38(2), 109-112. DOI: 10.1590/S1413-70542014000200001.
Koua, B. K., Koffi, P. M. E., & Gbaha, P. (2019). Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans. Journal of the Saudi Society of Agricultural Sciences, 18(1), 72-82.
Lentzou, D., Boudouvis, A. G., Karathanos, V. T., & Xanthopoulos, G. (2019). A moving boundary model for fruit isothermal drying and shrinkage: An optimization method for water diffusivity and peel resistance estimation. Journal of Food Engineering, 263, 299-310.
Maciel, R. M., Afonso, M. R., Costa, J., Severo, L. S., & Lima, N. D. D. (2017). Mathematical modeling of the foam-mat drying curves of guava pulp. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(10), 721-725.
Martins, E. A., Goneli, A. L., Goncalves, A. A., Hartmann Filho, C. P., Siqueira, V. C., & Oba, G. C. (2018). Drying kinetics of blackberry leaves. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(8), 570-576.
Mathai, A. M.; Haubold, H. J. (2017). Probability and Statistics: A Course for Physicists and Engineers. Walter de Gruyter GmbH & Co KG.
Melo, J. C. S., Pereira, E. D., Oliveira, K. P., Costa, C. H. C., & Freitosa, R. M. (2015). Estudo da cinética de secagem da pimenta de cheiro em diferentes temperaturas. Revista Verde, 10(2), 09-14.
Nascimento, V. R. G., Biagi, J. D., & Oliveira, R. A. (2015). Modelagem matemática da secagem convectiva com radiação infravermelha de grãos de Moringa oleifera. Revista Brasileira Engenharia Agrícola Ambiental, 19, 686-692.
Nguyen, T. K., Mondor, M., & Ratti, C. (2018). Shrinkage of cellular food during air drying. Journal of Food Engineering, 230, 8-17.
Radünz, L. L., Amaral, A. S., Mossi, A. J., & Rocha, R. P. (2011). Avaliação da cinética de secagem de carqueja. Engenharia na Agricultura, 19(1), 19-27.
Rashid, U., Anwar, F., Moser, B. R., & Knothe, G. (2008). Moringa oleifera oil: a possible source of biodiesel. Bioresource Technology, 99, 8175-8179.
Santana, C. R., Pereira, D. F., Araújo, N. A., Cavalcanti, B., & Silva, G. F. (2010). Caracterização físico-química da moringa. Revista Brasileira de Produtos Agroindustriais, 12(1), 55-60.
Silva, W. P., Silva, C. M. D. P. S., Gama, F. J. A., & Gomes, J. P. (2014). Mathematical models to describe thin-layer drying and to determine drying rate of whole bananas. Journal of the Saudi Society of Agricultural Sciences, 13, 67-74.
Sousa, E. P. D., de Figueirêdo, R. M., Gomes, J. P., Queiroz, A. J. D. M., Castro, D. S. D., & Lemos, D. M. (2017). Mathematical modeling of pequi pulp drying and effective diffusivity determination. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(7), 493-498.
Souza, L. F., Andrade, E. T., & Rios, P. A. (2019). Determination of volumetric contraction and drying kinetics of the dryed banana. Theoretical and Applied Engineering, 3(1), 20-30.
Teixeira, L. P., Andrade, E. T., Da Silva, P. G. L. (2012). Determinação do equilíbrio higroscópico e do calor isostérico da polpa e da casca do abacaxi. Engevista, 14(2).
Wiesenborn, D., Doddapaneni, R., Tostenson, K., & Kangas, N. (2001). Cooking indices to predict screw-press performance for crambe seed. Journal of the American Oil Chemists Society, 78, 467-471.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.