Influence of gamma radiation treatment on the profile of phenolic compounds and on the quality parameters of strawberries cv. Albion during storage

Authors

DOI:

https://doi.org/10.33448/rsd-v9i7.5147

Keywords:

Bioactive composition; Food preservation; Food irradiation; Microbial food safety.

Abstract

This study evaluated the effects of gamma radiation treatment on the profile of phenolic compounds and the quality parameters of strawberries irradiated during storage. The fruits were submitted to irradiation doses 0, 0.8; 1.6, and 2.4 kGy and stored for up to 9 days at 10°C. The levels of anthocyanins, ascorbic acid, and total phenolic compounds were evaluated, as along with the profile of these compounds and colorimetric and microbiological parameters. Our results show that the doses used preserved the studied phenolic compounds. The variation in ascorbic acid values may be due to post-harvest storage of fruits. The applied doses did not interfere in the characteristic red color of the strawberry. The irradiation dose of 2.4 kGy more efficiently controlled microorganisms and is the ideal dose to increase the shelf life of strawberries.

References

Alves, H., Alencar, E.R., Ferreira, W.F.S., Silva, C.R. & Ribeiro, J.L. (2019). Aspectos microbiológicos e físico-químicos de morango exposto ao gás ozônio em diferentes concentrações durante o armazenamento. Brazilian Journal of Food Technology, 22.

Andrade, Jr. V.C., Guimarães, A.G., Azevedo, A.M, Pinto, N.A.V.D. & Ferreira, M.A.M. (2016). Conservação pós-colheita de frutos de morangueiro em diferentes condições de armazenamento. Horticultura Brasileira, 34 (3): 405-11.

Brasil. (2001). ANVISA. Resolução RDC n°12, de 2 de janeiro de 2001. Estabelece padrões microbiológicos sanitários para alimentos. Agência Nacional da Vigilância Sanitária (ANVISA). Diário Oficial da União, Brasília, DF, 2001.

BRASIL. (2003). MAPA. Secretaria de Defesa Agropecuária. Instrução Normativa n° 62, de 26 de agosto de 2003. Oficializa os Métodos Analíticos Oficiais para Análises Microbiológicas para Controle de Produtos de Origem Animal e Água. Diário Oficial da União, Brasília, 26 de agosto de 2003.

Chisté, R.C., Freitas, M., Mercadante, A. Z.& Fernandes, E. (2012). The potential of extracts of Caryocar villosum pulp to scavenge reactive oxygen and nitrogen species. Food Chemistry,135 (3), 1740-1749.

Conti, J.H., Minami, K. & Tavares, F.C.A. (2002). Produção e qualidade de frutos diferentes cultivares de morangueiro em ensaios conduzidos em Atibaia e Piracicaba. Horticultura Brasileira, 20, 10-17.

De Velde, F. V., Tarola, A.M., Güemes, D.& Pirovani, M.E. (2013). Bioactive Compounds and Antioxidant Capacity of Camarosa and Selva Strawberries (Fragaria x ananassa Duch.). Foods, 2, 120-131.

Deruiter, F. E. & Dwyer, J. (2002) Consumer acceptance of irradiated foods: dawn of a new era. Food Service Technology, 2,47- 58.

Eça, K.S., Machado, M.T.C., Hubinger, M.D.& Menegalli, F.C. (2015). Development of Active Films From Pectin and Fruit Extracts: Light Protection, Antioxidant Capacity, and Compounds Stability. Journal of Food Science, 80, 11.

Fante, C.A., Elias, H. H. S., Henrique, P. C., Boas, A. C. V. & Lima, L. C. O. (2015). Atividade antioxidante durante o armazenamento de maçãs submetidas a irradiação. Ciência e Agrotecnologia, 39 (3), 269-275.

Françoso, I.L.T., Couto, M. A. L., Canniatti-Brazaca, S.G. & Arthur, V. (2008). Alterações físico-químicas em morangos (Fragaria anassa Duch.) irradiados e armazenados. Ciência e Tecnologia de Alimentos, 28 (3), 614-619.

Giampieri, F.,Tulipani, S., Alvarez-Suarez,M.J., Quiles, J.L.,Mezzetti, B. & Battino, M. (2012). The strawberry: Composition, nutritional quality, and impact on human health. Nutrition, 28(1), 9-19.

Giampieri, F., Alvarez-Suarez, J.M., Mazzoni, L., Romandini, S., Bompadre, S., Diamanti, J., Capocasa, F., Mezzetti,B., Quiles,J.L., Ferreiro,M.S., Tulipani,S. & Battino, M. (2013). The potential impact of strawberry on human health. Natural Product Research, 27(4-5), 448-455.

Giusti, M.M. & Wrolstad, R.E. (2001). Unit F1.2: anthocyanins: characterization and measurement with UV–visible spectroscopy. In: Wrolstad, R.E., Schwartz, S.J. (Eds.), Current Protocols in Food Analytical Chemistry. John Wiley & Sons, 1-13.

Gokmen, V. Selection of the indicator enzyme for blanching of vegetables. In: BAYINDIRLI, A. (Org.). Enzymes in fruit and vegetable processing: chemistry and engineering applications. Boca Raton: CRC Press, 2010.

Guerreiro, D., Madureira, J, Silva, T., Melo, R., Santos, P. M.P., Ferreira, A.,Trigo., M.J.,

Falcão, A.N., Margaça, F.M.A. & Verde, S. C. (2016). Post-harvest treatment of cherry tomatoes by gamma radiation: Microbial and physicochemical parameters evaluation. Innovative Food Science and Emerging Technologies, 36, 1-9.

Guimarães, I. C., Menezes, E. G. T., Abreu, P. S., Rodrigues, A.C., Borges, P.R.S.; Batista, L.R, Cirilo, M.A.& Lima, L.C.O. (2013). Physicochemical and microbiological quality of raspberries (Rubus idaeus) treated with different doses of gamma irradiation. Food Science and Technology, 33 (2), 316-322.

Han, C., Zhao, Y., Leonard, S. W. &Traber, M. G. (2004). Edible coatings to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria ananassa) and raspberries (Rubus ideaus). Postharvest Biology and Technology, 33, 67-78.

Harrison, K. & Were, L.M. (2007). Effect of gamma irradiation on total phenolic content yield and antioxidant capacity of Almond skin extracts. Food Chemistry, 102 (3), 932-937.

Hussain, P.R., Wani, A.M., Meena, R.S.& Dar, M.A. (2010a) Gamma irradiation induced enhancement of phenylalanine ammonialyase (PAL) and antioxidant activity in peach (Prunus persica Bausch, Cv. Elberta). Radiation Physics and Chemistry, 79, 982-989.

Hussain, P.R., Meena, R.S., Dar, M.A. &Wani, A.M. (2010b). Carboxymethyl cellulose coating and low-dose gamma irradiation improves storage quality and shelf life of pear (Pyrus Communis L. Cv. Bartlett/William). Journal of Food Science, 75, 586-596.

Hussain, P.R., Meena, R.S., Dar, M.A. & Wani, A.M. (2012). Effect of post-harvest calcium chloride dip treatment and gamma irradiation on storage quality and shelf-life extension of Red delicious apple. Journal of Food Science and Technology, 49,415- 426.

Hussain, P.R., Dar, M.A. & Wani, A.M. (2012) Effect of edible coating and gamma irradiation on inhibition of mould growth and quality retention of strawberry during refrigerated storage. International Journal of Food Science & Technology, 47, 2318-2324.

Ito, V.C., Alberti, A., Avila, S., Spoto, M., Nogueira, A. & Wosiacki, G. (2016). Effects of gamma radiation on the phenolic compounds and in vitro antioxidant activity of apple pomace flour during storage using multivariate statistical techniques. Innovative Food Science and Emerging Technologies, 33, 251-259.

Kaur, C. & Kapoor, H.C.(2001). Anti- oxidant activity and total phenolic- the millenniun’s health. International Journal of Food Science and Technology, 36 (7), 703-725.

Lima Filho, T., Della Lucia, S. M., Scolforo, C.Z., Lima, R. M., Carneiro, J.C.S., Pinheiro, C. J. G., Junior, J.L.P.& Minim, V.P.R. (2014) Consumer rejection threshold for strawberry radiation doses. Innovative Food Science and Emerging Technologies, 23, 194-198.

Mazur, S.P., Nes, A., Wold, A.B., Remberg, S.F., Martinsen, B.K. & Aaby, K.(2014). Effects of ripeness and cultivar on chemical composition of strawberry (Fragaria × ananassa Duch.) fruits and their suitability for jam production as a stable product at different storage temperatures. Food Chemistry, 146, 412- 422.

Mishra, B.B. Kumar, S., Wadhawan, S., Hajare, S. N., Saxena, S., More, V., Gautam, S.& Sharma, A. (2012). Browning of litchi fruit pericarp: Role of polyphenol oxidase, peroxidase, phenylalanine ammonia lyase and effect of gamma radiation. Journal of Food Biochemistry, 36 (5), 604-612.

Mridha, F., Huque, R., Khatun, A., Islam, M., Hossain, A., Hossain, M.D.A. & Kabir, M.D.S. (2017). Effectos of gamma irradiation on antioxidant markers, microbial population and sensory attributes of strawberry (Fragaria × ananassa Duch.) cv. Festival. Plant Cell Biotechnology and Molecular Biology, 18 (5-6), 208-218.

Nassur, R.C.M.R. Lima, R. A. Z., Lima, L.C.O. & Chalfun, N. N. J. (2016). Doses de radiação gama na conservação da qualidade de morangos. Comunicata Scientiae, 7 (1), 38-48.

Nizioł J, Misiorek, M. & Ruman, T. (2019). Mass spectrometry imaging of low molecular weight metabolites in strawberry fruit (Fragaria x ananassa Duch.) cv. Primoris with 109Ag nanoparticle enhanced target. Phytochemistry, 159, 11-19.

Proteggente, A.R., Pannala, A.S., Paganga, G., Van Buren L., Wagner, E., Wiseman S.,

Put, F.V.D., Dacombe, C. & Rice-Evans, C.A. (2002). The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radical Research, 36(2), 217-233.

RStudio Team (2015). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL .

Sanches, A.G., Silva, M. B., Moreira, E. G. S., Costa, J. M. & Cordeiro, A. M. (2017). Efeitos de diferentes fontes de radiação na fisiologia e vida útil pós-colheita de camu-camu. Revista de Agricultura Neotropical, 4(3), 1-8.

Serapian, T. & Prakash, A. (2016) Comparative evaluation of the effect of methyl bromide fumigation and phytosanitary irradiation on the quality of fresh strawberries. Scientia Horticulturae, 201, 109-117.

Severo, J. Tiecher, A., Chaves F.C., Silva, J.A., & Rombaldi, C.V.(2011). Gene transcript accumulation associated with physiological and chemical changes during developmental stages of strawberry cv. Camarosa. Food Chemistry, 126 (3), 995-1000.

Shahbaz, H.M., Ahn, J., Akram, K., Kim, H., Park, E. & Kwon, J. (2014). Chemical and sensory quality of fresh pomegranate fruits exposed to gamma radiation as quarantine treatment. Food Chemistry,145, 312-318.

Silva, C.R. & Koblitz, M.G.B.(2010). Partial characterization and inactivation of peroxidases and polyphenol-oxidase of umbucajá (Spondias spp). Ciências e Tecnologia de Alimentos, 30 (3), 790-796.

Singleton, V.L & Rossi, J.A. (1965) Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. American Journal Enology and Viticulture,16, 144-158.

Skrovankova, S., Sumczynski , D., Mlcek, J., Jurikova, T. & Sochor, J. (2015) Bioactive Compounds and Antioxidant Activity in Different Types of Berries. International Journal of Molecular Sciences, 16, 24673-24706.

Tezotto-Uliana, J.V., Berno, N. D., Saji, F. R. Q. & Kluge, R. A. K. (2013). Gamma radiation: An efficient technology to conserve the quality of fresh raspberries. Scientia Horticulturae,164, 348-352.

Tremocoldi, M.A., Daiuto, E.R., Alencar, S.M. & Vieites, R.L. (2014). Efeito da hidrotermia em abacate ‘Hass’ sobre a capacidade antioxidante, compostos fenólicos e coloração. Semina: Ciências Agrárias, Londrina, 35, (3), 1279-1290.

Wang, C. & Meng, X. (2016). Effect of 60Co γ-irradiation on storage quality and cell wall ultra-structure of blueberry fruit during cold storage. Innovative Food Science and Emerging Technologies, 38, 91-97.

Youssef, B.M., Asker, A.A., El-Samahy, S.K. & Swailam, H.M. (2002). Combined effect of steaming and gamma irradiation on the quality of mango pulp stored at refrigerated temperature. Food Research International, 35(1): 1-13.

Downloads

Published

20/06/2020

How to Cite

QUINTÃO, A. L. da C.; SILVA, V. D. M.; ARQUELAU, P. B. de F.; GOMES, D. C.; COSENZA, G. P.; LACERDA, I. C. A.; COSTA, E. C. da; CORREA, T. R.; FANTE, C. A. Influence of gamma radiation treatment on the profile of phenolic compounds and on the quality parameters of strawberries cv. Albion during storage. Research, Society and Development, [S. l.], v. 9, n. 7, p. e991975147, 2020. DOI: 10.33448/rsd-v9i7.5147. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/5147. Acesso em: 17 nov. 2024.

Issue

Section

Agrarian and Biological Sciences