Integral use of oil-based raw materials with “green solvents”: review and opportunities

Authors

DOI:

https://doi.org/10.33448/rsd-v9i8.5388

Keywords:

Deep eutectic solvents; By-products; Stability.

Abstract

Oilseeds are among the plants with the highest production in the world and are used for the manufacture of oils and fats for human consumption. In this process, co-products are generated, rich in phenolic compounds with proven health benefits, commonly intended for animal feeding. The extraction of these polyphenols is commonly done with organic, toxic, flammable and non-biodegradable solvents. Consequently, there is a greater appeal for the use of solvents and treatments that focus on “green” chemistry, avoiding environmental pollution and reducing the risks of accidents when handling toxic solvents. Due to these characteristics, deep eutectic solvents (DES), formed mainly of primary metabolites, such as organic acids, sugars, alcohols and amino acids associated with natural quaternary ammonium salts. DES have already been used to extract bioactive compounds from plants and beverages and more often used for the extraction of phenolic compounds and often achieving better results than common solvents. DES extracts are also associated with a greater stability, due to the hydrogen bonds between their components, responsible for even greater solubility and extraction of phenolic compounds. The aim of this review was not only to collect studies that used DES and its variants in the extraction of phenolic compounds from oilseeds raw materials, in addition to surveying the studies on the stability of these solvents under different storage conditions. The results available in the literature indicated the use of DES as promising, both in the extraction efficiency and in the stability of the extracted compounds.

Author Biographies

Fernanda de Sousa Bezerra, Universidade Federal do Estado do Rio de Janeiro

Programa de Pós-graduação de Alimentos e Nutrição

Danielly Ferraz da Costa, Universidade Estadual do Rio de Janeiro

Programa de Pós-graduação em Nutrição, Alimentação e Saúde

Maria Gabriela Bello Koblitz, Universidade Federal do Estado do Rio de Janeiro

Programa de Pós-graduação em Alimentos e Nutrição

References

Abbott, A. P., Capper, G., Davies, D. L., Rasheed, R. K., & Tambyrajah, V. (2003). Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, 70–71.

Acosta-Estrada, B. A., Gutiérrez-Uribe, J. A., & Serna-Saldívar, S. O. (2014). Bound phenolics in foods, a review. Food Chemistry, 152, 46–55.

Agostini-Costa, T. da S. (2018). Bioactive compounds and health benefits of some palm species traditionally used in Africa and the Americas – A review. Journal of Ethnopharmacology, 224, 202–229.

Ahmad, I., Pertiwi, A. S., Kembaren, Y. H., Rahman, A., & Mun’im, A. (2018). Application of Natural Deep Eutectic Solvent-Based Ultrasonic Assisted Extraction of Total Polyphenolic and Caffeine Content from Coffe Beans (Coffea Beans L.) For Instant Food Products. Journal of Applied Pharmaceutical Science, 138–143.

Alañón, M. E., Ivanović, M., Gómez-Caravaca, A. M., Arráez-Román, D., & Segura-Carretero, A. (2020). Choline chloride derivative-based deep eutectic liquids as novel green alternative solvents for extraction of phenolic compounds from olive leaf. Arabian Journal of Chemistry, 13, 1685–1701.

Alu’datt, M. H., Rababah, T., Alhamad, M. N., Al-Mahasneh, M. A., Almajwal, A., Gammoh, S., … Alli, I. (2017). A review of phenolic compounds in oil-bearing plants: Distribution, identification and occurrence of phenolic compounds. Food Chemistry, 218, 99–106.

Amakura, Y. (2013). Isolation of phenolic constituents and characterization of antioxidant markers from sunflower (Helianthus annuus) seed extract. Phytochemistry Letters, 4.

Arrutia, F., Binner, E., Williams, P., & Waldron, K. W. (2020). Oilseeds beyond oil: Press cakes and meals supplying global protein requirements. Trends in Food Science & Technology, 100, 88–102.

Bajaj, Y. P. S. (Org.). (1990). Legumes and Oilseed Crops I. Berlin, Heidelberg: Springer Berlin Heidelberg.

Bajkacz, S., & Adamek, J. (2017). Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products. Talanta, 168, 329–335.

Balandrán-Quintana, R. R., Mendoza-Wilson, A. M., Ramos-Clamont Montfort, G., & Huerta-Ocampo, J. Á. (2019). Plant-Based Proteins. In Proteins: Sustainable Source, Processing and Applications (p. 97–130). Elsevier.

Balaraman, H. B., Sivasubramaniyam, A., & Rathnasamy, S. K. (2020). High selective purification of Quercetin from Peanut hull using protic deep eutectic mixture based liquid–liquid microextraction. Microchemical Journal, 152, 104444.

Barbieri, J. B., Goltz, C., Batistão Cavalheiro, F., Theodoro Toci, A., Igarashi-Mafra, L., & Mafra, M. R. (2020). Deep eutectic solvents applied in the extraction and stabilization of rosemary (Rosmarinus officinalis L.) phenolic compounds. Industrial Crops and Products, 144, 112049.

Barros, A. A., Silva, J. M., Craveiro, R., Paiva, A., Reis, R. L., & Duarte, A. R. C. (2017). Green solvents for enhanced impregnation processes in biomedicine. Current Opinion in Green and Sustainable Chemistry, 5, 82–87.

Barthet, V. J., & Daun, J. K. (2011). Seed Morphology, Composition, and Quality. In Canola (p. 119–162). Elsevier.

Bolca, S. (2014). Bioavailability of Soy-Derived Isoflavones and Human Breast Cancer. In Polyphenols in Human Health and Disease (p. 1241–1256). Elsevier.

Caldas, T. W., Mazza, K. E. L., Teles, A. S. C., Mattos, G. N., Brígida, A. I. S., Conte-Junior, C. A., … Tonon, R. V. (2018). Phenolic compounds recovery from grape skin using conventional and non-conventional extraction methods. Industrial Crops and Products, 111, 86–91.

Chang, A. S., Sreedharan, A., & Schneider, K. R. (2013). Peanut and peanut products: A food safety perspective. Food Control, 32, 296–303.

Chang, S. H. (2014). An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass and Bioenergy, 62, 174–181.

Chang, S. K., Alasalvar, C., Bolling, B. W., & Shahidi, F. (2016). Nuts and their co-products: The impact of processing (roasting) on phenolics, bioavailability, and health benefits – A comprehensive review. Journal of Functional Foods, 26, 88–122.

Chanioti, S., & Tzia, C. (2018). Extraction of phenolic compounds from olive pomace by using natural deep eutectic solvents and innovative extraction techniques. Innovative Food Science & Emerging Technologies, 48, 228–239.

Choi, Y. H., van Spronsen, J., Dai, Y., Verberne, M., Hollmann, F., Arends, I. W. C. E., … Verpoorte, R. (2011). Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology? Plant Physiology, 156, 1701–1705.

Choi, Y. H., & Verpoorte, R. (2019). Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. Current Opinion in Food Science, 26, 87–93.

Chudhary, Z., Khera, R. A., Hanif, M. A., Ayub, M. A., & Hamrouni, L. (2020). Walnut. In Medicinal Plants of South Asia (p. 671–684). Elsevier.

CONAB. (2020). Acompanhamento de grãos da safra brasileira. Recuperado de https://www.conab.gov.br/info-agro/safras/graos

Craveiro, R., Aroso, I., Flammia, V., Carvalho, T., Viciosa, M. T., Dionísio, M., … Paiva, A. (2016). Properties and thermal behavior of natural deep eutectic solvents. Journal of Molecular Liquids, 215, 534–540.

Crisosto, C. H., Ferguson, L., & Nanos, G. (2011). Olive (Olea europaea L.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits (p. 63–87e). Elsevier.

Cull, S. G., Holbrey, J. D., Vargas-Mora, V., Seddon, K. R., & Lye, G. J. (2000). Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. Biotechnology and Bioengineering, 69, 227–233.

Cvetanović, A. (2019). Extractions Without Organic Solvents: Advantages and Disadvantages. Chemistry Africa, 2, 343–349.

Cvjetko Bubalo, M., Vidović, S., Radojčić Redovniković, I., & Jokić, S. (2018). New perspective in extraction of plant biologically active compounds by green solvents. Food and Bioproducts Processing, 109, 52–73.

Dai, Y., Rozema, E., Verpoorte, R., & Choi, Y. H. (2016). Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents. Journal of Chromatography A, 1434, 50–56.

Dai, Y., Verpoorte, R., & Choi, Y. H. (2014). Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). Food Chemistry, 159, 116–121.

Dai, Y., Witkamp, G.-J., Verpoorte, R., & Choi, Y. H. (2015). Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chemistry, 187, 14–19.

Dunford, N. T., Martínez, E. F., & Salas, J. J. (2015). Sunflower: Chemistry, production, processing, and utilization (1o ed). AOCS Press/Academic Press.

El Kantar, S., Rajha, H. N., Boussetta, N., Vorobiev, E., Maroun, R. G., & Louka, N. (2019). Green extraction of polyphenols from grapefruit peels using high voltage electrical discharges, deep eutectic solvents and aqueous glycerol. Food Chemistry, 295, 165–171.

Esfahlan, A. J., Jamei, R., & Esfahlan, R. J. (2010). The importance of almond (Prunus amygdalus L.) and its by-products. Food Chemistry, 120, 349–360.

FAO. (2018). FAOSTAT. Recuperado 5 de junho de 2020, de Food and Agriculture Organization os the United Nations website: http://www.fao.org/faostat/en/#data/QC

Fernández, M. de los Á., Boiteux, J., Espino, M., Gomez, F. J. V., & Silva, M. F. (2018). Natural deep eutectic solvents-mediated extractions: The way forward for sustainable analytical developments. Analytica Chimica Acta, 1038, 1–10.

Fernández, M. de los Á., Espino, M., Gomez, F. J. V., & Silva, M. F. (2018). Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products. Food Chemistry, 239, 671–678.

Fernández-Prior, M. Á., Charfi, A., Bermúdez-Oria, A., Rodríguez-Juan, E., Fernández-Bolaños, J., & Rodríguez-Gutiérrez, G. (2020). Deep eutectic solvents improve the biorefinery of alperujo by extraction of bioactive molecules in combination with industrial thermal treatments. Food and Bioproducts Processing, 121, 131–142.

Fu, N., Lv, R., Guo, Z., Guo, Y., You, X., Tang, B., … Row, K. H. (2017). Environmentally friendly and non-polluting solvent pretreatment of palm samples for polyphenol analysis using choline chloride deep eutectic solvents. Journal of Chromatography A, 1492, 1–11.

Gan, R.-Y., Lui, W.-Y., Wu, K., Chan, C.-L., Dai, S.-H., Sui, Z.-Q., & Corke, H. (2017). Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends in Food Science & Technology, 59, 1–14.

Gao, C., Cai, C., Liu, J., Wang, Y., Chen, Y., Wang, L., & Tan, Z. (2020). Extraction and preliminary purification of polysaccharides from Camellia oleifera Abel. Seed cake using a thermoseparating aqueous two-phase system based on EOPO copolymer and deep eutectic solvents. Food Chemistry, 313, 126164.

García, A., Rodríguez-Juan, E., Rodríguez-Gutiérrez, G., Rios, J. J., & Fernández-Bolaños, J. (2016). Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chemistry, 197, 554–561.

Garcia-Garcia, G., Stone, J., & Rahimifard, S. (2019). Opportunities for waste valorisation in the food industry – A case study with four UK food manufacturers. Journal of Cleaner Production, 211, 1339–1356.

Gentil, R. M., Serra, J. C. V., & Castro, R. B. de. (2012). Resíduos sólidos orgânicos provenientes da extração de oleaginosas para biodesel e seus potenciais de uso. Geoambiente On-line, 01-16 pág.

Ghatak, S. K., & Sen, K. (2013). Peanut proteins: Applications, ailments and possible remediation. Journal of Industrial and Engineering Chemistry, 19, 369–374.

Gupta, A., Behl, T., & Panichayupakaranan, P. (2019). A review of phytochemistry and pharmacology profile of Juglans regia. Obesity Medicine, 16, 100142.

Hosseini, S. E., & Wahid, M. A. (2014). Utilization of palm solid residue as a source of renewable and sustainable energy in Malaysia. Renewable and Sustainable Energy Reviews, 40, 621–632.

Itoh, T., & Koo, Y.-M. (Orgs.). (2019). Application of Ionic Liquids in Biotechnology. Cham: Springer International Publishing.

Jeliński, T., Przybyłek, M., & Cysewski, P. (2019). Natural Deep Eutectic Solvents as Agents for Improving Solubility, Stability and Delivery of Curcumin. Pharmaceutical Research, 36, 116.

Kaltsa, O., Grigorakis, S., Lakka, A., Bozinou, E., Lalas, S., & Makris, D. P. (2020). Green Valorization of Olive Leaves to Produce Polyphenol-Enriched Extracts Using an Environmentally Benign Deep Eutectic Solvent. AgriEngineering, 2, 226–239.

Karaman, S., Karasu, S., Tornuk, F., Toker, O. S., Geçgel, Ü., Sagdic, O., … Gül, O. (2015). Recovery Potential of Cold Press Byproducts Obtained from the Edible Oil Industry: Physicochemical, Bioactive, and Antimicrobial Properties. Journal of Agricultural and Food Chemistry, 63, 2305–2313.

Karefyllakis, D., Altunkaya, S., Berton-Carabin, C. C., van der Goot, A. J., & Nikiforidis, C. V. (2017). Physical bonding between sunflower proteins and phenols: Impact on interfacial properties. Food Hydrocolloids, 73, 326–334.

Khezeli, T., Daneshfar, A., & Sahraei, R. (2016). A green ultrasonic-assisted liquid–liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of ferulic, caffeic and cinnamic acid from olive, almond, sesame and cinnamon oil. Talanta, 150, 577–585.

Khir, R., & Pan, Z. (2019). Walnuts. In Integrated Processing Technologies for Food and Agricultural By-Products (p. 391–411). Elsevier.

Kurki, A., Bachmann, J., & Hill, H. (2008). Oilseed Processing for Small-Scale Producers. 12.

Laguna, O., Barakat, A., Alhamada, H., Durand, E., Baréa, B., Fine, F., … Lecomte, J. (2018). Production of proteins and phenolic compounds enriched fractions from rapeseed and sunflower meals by dry fractionation processes. Industrial Crops and Products, 118, 160–172.

Lomascolo, A., Uzan-Boukhris, E., Sigoillot, J.-C., & Fine, F. (2012). Rapeseed and sunflower meal: A review on biotechnology status and challenges. Applied Microbiology and Biotechnology, 95, 1105–1114.

Mba, O. I., Dumont, M.-J., & Ngadi, M. (2015). Palm oil: Processing, characterization and utilization in the food industry – A review. Food Bioscience, 10, 26–41.

Mokrani, A., & Madani, K. (2016). Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Separation and Purification Technology, 162, 68–76.

Mühlbauer, W., & Müller, J. (2020). Peanut (Arachis hypogaea L.). In Drying Atlas (p. 151–156). Elsevier.

Neo, Y.-P., Ariffin, A., Tan, C.-P., & Tan, Y.-A. (2010). Phenolic acid analysis and antioxidant activity assessment of oil palm (E. guineensis) fruit extracts. Food Chemistry, 122, 353–359.

Nollet, L. M. L., & Gutierrez-Uribe, J. A. (Orgs.). (2018). Phenolic Compounds in Food: Characterization and Analysis (1o ed). Boca Raton : CRC Press, Taylor & Francis Group, 2018.: CRC Press.

Ornelas, L. H. (2007). Técnica Dietética: Seleção e preparo do alimentos (8° ed rev. e ampl., Vol. 1). São Paulo - SP: Atheneu.

Orts, A., Revilla, E., Rodriguez-Morgado, B., Castaño, A., Tejada, M., Parrado, J., & García-Quintanilla, A. (2019). Protease technology for obtaining a soy pulp extract enriched in bioactive compounds: Isoflavones and peptides. Heliyon, 5, e01958.

Panić, M., Gunjević, V., Cravotto, G., & Radojčić Redovniković, I. (2019). Enabling technologies for the extraction of grape-pomace anthocyanins using natural deep eutectic solvents in up-to-half-litre batches extraction of grape-pomace anthocyanins using NADES. Food Chemistry, 300, 125185.

Paradiso, V. M., Clemente, A., Summo, C., Pasqualone, A., & Caponio, F. (2016). Towards green analysis of virgin olive oil phenolic compounds: Extraction by a natural deep eutectic solvent and direct spectrophotometric detection. Food Chemistry, 212, 43–47.

Paradiso, V. M., Squeo, G., Pasqualone, A., Caponio, F., & Summo, C. (2019). An easy and green tool for olive oils labelling according to the contents of hydroxytyrosol and tyrosol derivatives: Extraction with a natural deep eutectic solvent and direct spectrophotometric analysis. Food Chemistry, 291, 1–6.

Pickardt, C., Weisz, G. M., Eisner, P., Kammerer, D. R., Neidhart, S., & Carle, R. (2011). Processing of low polyphenol protein isolates from residues of sunflower seed oil production. Procedia Food Science, 1, 1417–1424.

Prado, A. C. P., & Block, J. M. (2012). Palm and Palm Kernel Oil Production and Processing in Brazil. In Palm Oil (p. 251–274). Elsevier.

Pratap, A., Gupta, S. K., Kumar, J., Mehandi, S., & Pandey, V. R. (2016). Soybean. In Breeding Oilseed Crops for Sustainable Production.

Radošević, K., Ćurko, N., Gaurina Srček, V., Cvjetko Bubalo, M., Tomašević, M., Kovačević Ganić, K., & Radojčić Redovniković, I. (2016). Natural deep eutectic solvents as beneficial extractants for enhancement of plant extracts bioactivity. LWT, 73, 45–51.

Renard, C. M. G. C. (2018). Extraction of bioactives from fruit and vegetables: State of the art and perspectives. LWT, 93, 390–395.

Rocchetti, G., Blasi, F., Montesano, D., Ghisoni, S., Marcotullio, M. C., Sabatini, S., … Lucini, L. (2019). Impact of conventional/non-conventional extraction methods on the untargeted phenolic profile of Moringa oleifera leaves. Food Research International, 115, 319–327.

Rodrigues, F., Pimentel, F. B., & Oliveira, M. B. P. P. (2015). Olive by-products: Challenge application in cosmetic industry. Industrial Crops and Products, 70, 116–124.

Ruesgas-Ramón, M., Figueroa-Espinoza, M. C., & Durand, E. (2017). Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction: Overview, Challenges, and Opportunities. Journal of Agricultural and Food Chemistry, 65, 3591–3601.

Schanes, K., Dobernig, K., & Gözet, B. (2018). Food waste matters—A systematic review of household food waste practices and their policy implications. Journal of Cleaner Production, 182, 978–991.

Servili, M., Selvaggini, R., Esposto, S., Taticchi, A., Montedoro, G., & Morozzi, G. (2004). Health and sensory properties of virgin olive oil hydrophilic phenols: Agronomic and technological aspects of production that affect their occurrence in the oil. Journal of Chromatography A, 1054, 113–127.

Shabani, E., Zappi, D., Berisha, L., Dini, D., Antonelli, M. L., & Sadun, C. (2020). Deep eutectic solvents (DES) as green extraction media for antioxidants electrochemical quantification in extra-virgin olive oils. Talanta, 215, 120880.

Shang, X., Dou, Y., Zhang, Y., Tan, J.-N., Liu, X., & Zhang, Z. (2019). Tailor-made natural deep eutectic solvents for green extraction of isoflavones from chickpea (Cicer arietinum L.) sprouts. Industrial Crops and Products, 140, 111724.

Silva, J. M. M., Reis, R. L., Paiva, A., & Duarte, A. R. C. (2018). Design of functional therapeutic deep eutectic solvents based on choline chloride and ascorbic acid. 29.

Singh, B., Singh, J. P., Kaur, A., & Singh, N. (2017). Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Research International, 101, 1–16.

Siracusa, L., & Ruberto, G. (2019). Not Only What Is Food Is Good—Polyphenols From Edible and Nonedible Vegetable Waste. In Polyphenols in Plants (p. 3–21). Elsevier.

Smith, E. L., Abbott, A. P., & Ryder, K. S. (2014). Deep Eutectic Solvents (DESs) and Their Applications. Chemical Reviews, 114, 11060–11082.

Socas-Rodríguez, B., Santana-Mayor, Á., Herrera-Herrera, A. V., & Rodríguez-Delgado, M. Á. (2020). Deep eutectic solvents. In Green Sustainable Process for Chemical and Environmental Engineering and Science (p. 123–177). Elsevier.

Stott, P. (1998). Transdermal delivery from eutectic systems: Enhanced permeation of a model drug, ibuprofen. Journal of Controlled Release, 50, 297–308.

Suchoszek-Łukaniuk, K., Jaromin, A., Korycińska, M., & Kozubek, A. (2011). Health Benefits of Peanut (Arachis hypogaea L.) Seeds and Peanut Oil Consumption. In Nuts and Seeds in Health and Disease Prevention (p. 873–880). Elsevier.

Tan, Y. T., Ngoh, G. C., & Chua, A. S. M. (2018). Evaluation of fractionation and delignification efficiencies of deep eutectic solvents on oil palm empty fruit bunch. Industrial Crops and Products, 123, 271–277.

Thrane, M., Paulsen, P. V., Orcutt, M. W., & Krieger, T. M. (2017). Soy Protein: Impacts, Production, and Applications. Sustainable Protein Sources, 23–45.

USDA. (2020a). World Agricultural Production | USDA Foreign Agricultural Service. Recuperado 2 de fevereiro de 2019, de https://www.fas.usda.gov/data/world-agricultural-production

USDA. (2020b, junho). Tree Nuts Production | USDA Foreign Agricultural Service. Recuperado 1o de junho de 2020, de https://downloads.usda.library.cornell.edu/usda-esmis/files/tm70mv16z/jm2155639/sq87c996m/TreeNuts.pdf

Vanda, H., Dai, Y., Wilson, E. G., Verpoorte, R., & Choi, Y. H. (2018). Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. Comptes Rendus Chimie, 21, 628–638.

Vieira, V., Prieto, M. A., Barros, L., Coutinho, J. A. P., Ferreira, I. C. F. R., & Ferreira, O. (2018). Enhanced extraction of phenolic compounds using choline chloride based deep eutectic solvents from Juglans regia L. Industrial Crops and Products, 115, 261–271.

Vilková, M., Płotka-Wasylka, J., & Andruch, V. (2020). The role of water in deep eutectic solvent-base extraction. Journal of Molecular Liquids, 304, 112747.

Wanasundara, J. P. D., Tan, S., Alashi, A. M., Pudel, F., & Blanchard, C. (2017). Proteins From Canola/Rapeseed. In Sustainable Protein Sources (p. 285–304). Elsevier.

Weisz, G. M., Carle, R., & Kammerer, D. R. (2013). Sustainable sunflower processing—II. Recovery of phenolic compounds as a by-product of sunflower protein extraction. Innovative Food Science & Emerging Technologies, 17, 169–179.

Wildermuth, S. R., Young, E. E., & Were, L. M. (2016). Chlorogenic Acid Oxidation and Its Reaction with Sunflower Proteins to Form Green-Colored Complexes: Chlorogenic acid oxidation…. Comprehensive Reviews in Food Science and Food Safety, 15, 829–843.

Wongsirichot, P., Gonzalez-Miquel, M., & Winterburn, J. (2019). Holistic valorization of rapeseed meal utilizing green solvents extraction and biopolymer production with Pseudomonas putida. Journal of Cleaner Production, 230, 420–429.

Yada, S., Lapsley, K., & Huang, G. (2011). A review of composition studies of cultivated almonds: Macronutrients and micronutrients. Journal of Food Composition and Analysis, 24, 469–480.

Zhou, J., Ma, Y., Jia, Y., Pang, M., Cheng, G., & Cai, S. (2019). Phenolic profiles, antioxidant activities and cytoprotective effects of different phenolic fractions from oil palm (Elaeis guineensis Jacq.) fruits treated by ultra-high pressure. Food Chemistry, 288, 68–77.

Zoumpoulakis, P., Sinanoglou, V., Siapi, E., Heropoulos, G., & Proestos, C. (2017). Evaluating Modern Techniques for the Extraction and Characterisation of Sunflower (Hellianthus annus L.) Seeds Phenolics. Antioxidants, 6, 46.

Zurob, E., Cabezas, R., Villarroel, E., Rosas, N., Merlet, G., Quijada-Maldonado, E., … Plaza, A. (2020). Design of natural deep eutectic solvents for the ultrasound-assisted extraction of hydroxytyrosol from olive leaves supported by COSMO-RS. Separation and Purification Technology, 248, 117054.

Published

08/07/2020

How to Cite

BEZERRA, F. de S.; DA COSTA, D. F.; KOBLITZ, M. G. B. Integral use of oil-based raw materials with “green solvents”: review and opportunities. Research, Society and Development, [S. l.], v. 9, n. 8, p. e372985388, 2020. DOI: 10.33448/rsd-v9i8.5388. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/5388. Acesso em: 23 apr. 2024.

Issue

Section

Review Article