Degradação de citarabina, creatinina e uréia na urina artificial pelo processo fotoelétrico de sono-eletroquímico

Autores

DOI:

https://doi.org/10.33448/rsd-v9i8.5425

Palavras-chave:

Processo oxidativo avançado; Quimioterapêutica; Eletroquímica; Planejamento fatorial; Efluentes hospitalares; Fotoquímica; Sonoquímica.

Resumo

O presente trabalho teve como objetivo a avaliação da combinação de técnicas eletroquímicas, fotoquímicas e sonroquímicas (sono-eletroquímica fotoassistida) aplicadas à degradação da citarabina (droga quimioterapêutica) na urina simulada que continha creatinina e uréia, através de uma pesquisa laboratorial quali e quantitativa. Um reator eletroquímico de filtro prensa de fluxo contínuo foi empregado usando o ânodo dimensionalmente estável (DSA® - Ti / Ru0.3Ti0.7O2) como material do eletrodo. O delineamento fatorial 23 foi utilizado para otimizar melhores degradações dos compostos orgânicos contidos na urina artificial (creatinina e uréia) juntamente com a citarabina, variando a corrente elétrica, o tempo de retenção e a vazão; a resposta variável foi o carbono orgânico total (TOC). Além disso, as análises UHPLC demonstraram a remoção da ancitabina (precursora da citarabina), corroborando com os dados obtidos pelo delineamento experimental. O uso da urina artificial como suporte eletrônico interfere no processo eletroquímico, levando o TOC a níveis elevados. No entanto, observou-se que houve remoção significativa da carga orgânica presente na solução de efluente, mesmo quando é utilizada uma matriz de degradação mais complexa (urina artificial).

Biografia do Autor

Raissa Antonelli, Universidade Federal do Triângulo Mineiro

Doctoral student

Fernanda Silva Pimenta, Universidade Federal do Triângulo Mineiro

Undergraduate student of Chemical Engineering

Marquele Amorim Tonhela, Universidade Federal do Triângulo Mineiro

Doctoral student

Ana Luiza de Toledo Fornazari, Pontífica Universidad Católica de Chile

Researcher PUC-Santiago

Ana Claudia Granato, Universidade Federal do Triângulo Mineiro

Professor Department of Chemical Engineering

Geoffroy Roger Pointer Malpass, Universidade Federal do Triângulo Mineiro

Professor Department of Chemical Engineering

Referências

Allwood, M., Stanley, A. & Wright, P. (2002). The Cytotoxics Handbook. Radcliffe Medical Press, 2002.

AWWA, APHA, and WEF (2017) standard methods for the examination of water and wastewater, Washington, American Public Health Association.

Campins Falcó, P., Tortajada Genaro, L. A., Meseger Lloret, S., Blasco Gomez, F., Sevillano Cabeza, A., & Molins Legua, C. (2001) Creatinine determination in urine samples by batchwise kinetic procedure and flow injection analysis using the Jaffé reaction: Chemometric study. Talanta, 55(6), 1079–1089. doi:10.1016/S0039-9140(01)00522-7

Costa, S. H. M. (2010). Tratamento e disposição final de resíduos de medicamentos quimioterápicos e de rejeitos radioterápicos: estudo comparativo entre a legislação internacional e a brasileira (Treatment and disposal of waste chemotherapy drugs and radiotherapy tailings: a comparative study between the Brazilian and international legislation) [MSc thesis]. Postgraduate program of the Department of Sanitation and Environmental Engineering: National School of Public Health Sergio Arouca. Available at: https://www.arca.fiocruz.br/handle/icict/2465?mode=simple

Hirose, J. et al. (2005) Inactivation of antineoplastics in clinical wastewater by electrolysis. Chemosphere, 60(8), 1018–1024. doi: 10.1016/j.chemosphere.2005.01.024

Jamil Akhtar, M., Ataullah Khan, M., & Ahmad, I. (2003) Identification of photoproducts of folic acid and its degradation pathways in aqueous solution. Journal of Pharmaceutical and Biomedical Analysis, 31(3), 579–588. doi:10.1016/s0731-7085(02)00724-0

Kissinger, L. D., & Stemm, N. L. (1986) Determination of the antileukemia agents cytarabine and azacitidine and their respective degradation products by high-performance liquid chromatography. Journal of Chromatography A, 353(C), 309–318. doi:10.1016/s0021-9673(01)87101-6

Knorst, M. T., Neubert, R., & Wohlrab, W. (1997) Analytical methods for measuring urea in pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis, 15(11), 1627–1632. doi: 10.1016/s0731-7085(96)01978-4

Kobayashi, T., et al. (2012) Application of electrolysis for detoxification of an antineoplastic in urine. Ecotoxicology and Environmental Safety, 78, 123–127. doi: 10.1016/j.ecoenv.2011.11.028

Laube, N., Mohr, B., & Hesse, A. (2001) Laser-probe-based investigation of the evolution of particle size distributions of calcium oxalate particles formed in artificial urines. Journal of Crystal Growth, 233(1–2), 367–374. doi: 10.1016/S0022-0248(01)01547-0

Malpass, G. R. P., Miwa, D. W., Miwa, A. C. P., Machado, S. A. S., & Motheo, A.J. (2007) Photo-Assisted Electrochemical Oxidation of Atrazine on a commercial Ti/Ru0.3Ti0.7O2 DSA electrode. Environmental Science and Technology, 41, 7120-7125. doi: 10.1021/es070798n

de Mello Florêncio, T. et al. (2016) Photo-assisted electrochemical degradation of simulated textile effluent coupled with simultaneous chlorine photolysis. Environmental Science and Pollution Research, 23(19), 19292–19301. doi: 10.1007/s11356-016-6912-x

Michelini, L. J. (2014) Avaliação físico-química, microbiológica e ecotoxicológica de efluentes oriundos de clínicas de oncologia do município de goiânia. Dissertação de Mestrado em Engenharia do Meio Ambiente, Universidade Federal de Goiás, Goiânia. Available at: https://repositorio.bc.ufg.br/tede/handle/tede/3837

Molinari, R., Pirillo, F., Loddo, V., & Palmisano, L. (2006) Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor. Catalysis Today, 118(1–2), 205–213. doi: 10.1016/j.cattod.2005.11.091

Moura, L., & Silva, R. F. (2016) Medicamentos antineoplásicos no meio ambiente: a contribuição de um hospital universitário de alta complexidade Leonardo. Revista Gestão & Sustentabilidade Ambiental, 5(1), 313–333. doi: 10.19177/rgsa.v5e12016313-333

Parra, K. N., Gul, S., Aquino, J. M., Miwa, D. W., & Motheo, A. J. (2016) Electrochemical degradation of tetracycline in artificial urine medium. Journal of Solid-State Electrochemistry, 20(4), 1001–1009. doi: 10.1007/s10008-015-2833-8

Pereira, A. S. et al (2018). Methodology of cientific research. [e-Book]. Santa Maria City. UAB / NTE / UFSM Editors. Accessed on: June, 23th, 2020.Available at: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Pereira De Sousa, D. D. et al. (2019) Treatment of real dairy wastewater by electrolysis and photo-assisted electrolysis in presence of chlorides. Water Science and Technology, 80(5), 961–969. doi: 10.2166/wst.2019.339

Pinto, C. F. et al. (2019) Experimental-design-guided approach for the removal of atrazine by sono-electrochemical-UV-chlorine techniques. Environmental Technology, 40(4), 430-440. doi: 10.1080/09593330.2017.1395480

Rabii, F. W., Segura, P. A., Fayad, P. B., & Sauvé, S. (2014) Determination of six chemotherapeutic agents in municipal wastewater using online solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry. Science of the Total Environment, 487(1), 792–800. doi: 10.1016/j.scitotenv.2013.12.050

Reis, R. M. et al. (2012) Use of gas diffusion electrode for the in situ generation of hydrogen peroxide in an electrochemical flow-by reactor. Industrial and Engineering Chemistry Research, 51(2), 649–654. doi: 10.1021/ie201317u

Shewach, D. S., & Kuchta, R. D. (2009) Introduction to cancer chemotherapeutics. Chemical Reviews, 109(7), 2859–2861. doi: 10.1021/cr900208x

Singla, J., Verma, A., & Sangal, V. K. (2018) Parametric optimization for the treatment of human urine metabolite, creatinine using electro-oxidation. Journal of Electroanalytical Chemistry, 809, 136–146. doi: 10.1016/j.jelechem.2017.12.061

Sousa, E. S. et al. (2017) Processos Eletroquímicos Oxidativos Avançados para Degradação do Complexo EDTA-Ni (II). Revista Brasileira de Ciência, Tecnologia e Inovação, 2(2), 125–138. doi: 10.18554/rbcti.v2i2.3058

Stumpf, M., Ternes, T. A., Wilken, R. D., Rodrigues, S.V., & Baumann, W. (1999) Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Science of the Total Environment, 225(1–2), 135–141. doi: 10.1016/s0048-9697(98)00339-8

Xiang, Y., Fang, J., & Shang, C. (2016) Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process. Water Research, 90, 301–308. doi: 10.1016/j.watres.2015.11.069

Yu, Y., & Wu, L. (2011) Comparison of four extraction methods for the analysis of pharmaceuticals in wastewater. Journal of Chromatography A, 1218(18), 2483–2489. doi: 10.1016/j.chroma.2011.02.050

Downloads

Publicado

11/07/2020

Como Citar

ANTONELLI, R.; PIMENTA, F. S.; TONHELA, M. A.; FORNAZARI, A. L. de T.; GRANATO, A. C.; MALPASS, G. R. P. Degradação de citarabina, creatinina e uréia na urina artificial pelo processo fotoelétrico de sono-eletroquímico. Research, Society and Development, [S. l.], v. 9, n. 8, p. e411985425, 2020. DOI: 10.33448/rsd-v9i8.5425. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/5425. Acesso em: 6 abr. 2025.

Edição

Seção

Engenharias