Physicochemical, microbiological and bioactive evaluations of ‘Araçá-Boi’ (Eugenia stipitata Mc Vaugh) pulp exposed to Gamma Irradiation

Authors

DOI:

https://doi.org/10.33448/rsd-v9i8.5453

Keywords:

Non-thermal processing; Bioactive compounds; Vitamin C; Shelf life.

Abstract

The aim of this research was to evaluate the physicochemical, microbiological and bioactive quality of ‘Araçá-Boi’ pulps exposed to Gamma Irradiation. Manual harvesting was done in the morning, using good agricultural practices, and fruits were packed in thermal boxes and transported to the ‘Laboratório de Armazenamento e Processamento de Produtos Agrícolas’ of the ‘Universidade Federal de Campina Grande’, to obtain the pulp. The ‘Araçá-Boi’ pulp was irradiated in the ‘Laboratório de Irradiação Gama do Centro de Desenvolvimento de Tecnologia Nuclear’ (CDTN), located at UFPE - Recife, PE, where three doses of Gamma Irradiation (2, 3, 4 kGy) were applied for later comparison with the non-irradiated sample (control). After irradiation, the microbiological, physicochemical parameters and the quantification of vitamin C and flavonoids were evaluated it can be observed that dose 6 is grouped in a set with differential characteristics of the other treatments, as it provided higher AA, pH, luminosity and water activity (Aw). It was observed that there was no microorganism development after irradiation in all analyzed treatments. It can be concluded that the different doses of Gamma Irradiation guaranteed the microbiological quality of the ‘Araçá-Boi’ pulp, remaining fit for consumption and in compliance with the Brazilian legislation.

References

Alcarde, A. R., Walder J. M. M., & Horii, J. (2003). Fermentation of irradiated sugarcane must. Science Agriculture, 60, 677-81.

APHA. American Public Health Association (2001). Compendium of methods for the microbiological examination of foods (4nd ed.). Washington, DC: American Public Health Association

Aquino, S. (2003). Efeitos da radiação gama no crescimento de aspergillus flavus produtor de aflatoxinas e no emprego da técnica da reação em cadeia da polimerase (PCR) em amostras de grãos de milho inoculadas artificialmente (Doctoral dissertation, Universidade de São Paulo).

Benassi, M. D. T., & Antunes, A. J. (1988). A comparison of metaphosphoric and oxalic acids as extractants solutions for the determination of vitamin C in selected vegetables. Arquivos de Biologia e Tecnologia, 31(4), 507-51

Celli, G. B., Pereira-Netto, A. B., & Beta, T. (2011). Comparative analysis of total phenolic content, antioxidant activity, and flavonoids profile of fruits from two varieties of Brazilian cherry (Eugenia uniflora L.) throughout the fruit developmental stages. Food Research International, 44(8), 2442-2451.

Fanaro, G. B. (2013). Efeito da radiação ionizante em chás de planta camellia sinensis irradiados com diferentes atividades de água. (Doctoral dissertation, Instituto de Pesquisas Energéticas e Nucleares).

Farkas, J. (2006). Irradiation for better foods. Trends in Food Science & Technology, 17(4), 148-152.

Francis, F. J. (1982). Analysis of anthocyanins in foods. In. Markakis P. (Ed.), Anthocyanins as Food Colors. (pp. 181-207). New York, NY: Academic Press.

Garzón, G. A., Narváez-Cuenca, C. E., Kopec, R. E., Barry, A. M., Riedl, K. M., & Schwartz, S. J. (2012). Determination of carotenoids, total phenolic content, and antioxidant activity of Arazá (Eugenia stipitata McVaugh), an Amazonian fruit. Journal of agricultural and food chemistry, 60(18), 4709-4717.

Iacobucci, G. A., & Sweeny, J. G. (1983). The chemistry of anthocyanins, anthocyanidins and related flavylium salts. Tetrahedron, 39(19), 3005-3038.

IAL. Instituto Adolfo Lutz (2005). Métodos físico-químicos para análise de alimentos (4rd ed.) Brasília, DF: Ministério da Saúde.

Khan, K. A., & Abrahem, M. (2010). Effect of irradiation on quality of spices. International Food Research Journal, 17(1), 825-36.

Kume, T., Furuta, M., Todiriki, S., Venoyama, N. Y., & Kobayashi, Y. (2009). Status of food irradiation in the world. Radiation Physics and Chemistry, 78(3), 222 - 229.

Mostafavi, H. A., Mahyar, S. M., Fathollahi, H., Shahnazi, S., & Mirjalili, S. M. (2013). Integrated effect of gamma radiation and biocontrol agente on quality parameters of aplle fruit: Na innovative comercial preservation method. Radiation Physics and Chemistry, 91(1), 193-9.

Mota, R. V. (2006). Caracterização do suco de amora-preta elaborado em extrator caseiro. Ciência e Tecnologiade Alimentos, 26(2): 303-308.

Nassur, R. C. M., Lima, R. A. Z., Lima, L. C. O., & Chalfun, N. N. J. (2016). Doses de radiação gama na conservação da qualidade de morangos. Comunicata Scientiae, 7(1): 38-48.

Nelson, N. (1944). A photometric adaptation of the Somogyi method for the determination of glucose. The Journal of Biological Chemistry, 153(1), 375- 380.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Methodology of cientific research. Retrieved from: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_ Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Rodriguez-Amaya, D. B., & Kimura, M. (2004). HarvestPlus handbook for carotenoid analysis (2 Ed.). Washington, DC: International Food Policy Research Institute.

Santillo, A. G. (2011). Efeitos da radiação ionizante nas propriedades nutricionais das uvas de mesa benitaka e uvas passas escuras (Masters dissertation, Universidade de São Paulo).

Santos, P. H. S. (2008). Estudo da cinética de degradação do ácido ascórbico na secagem se abacaxi em atmosfera modificada (Masters dissertation, Universidade Estadual de Campinas).

Silva, L. M. R., Figueiredo, E. A. T., Ricardo, N. M. P. S., Vieira, I. G. P., Figueiredo, R. W., Brasil, I. M., & Gomes, C. L. (2014). Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food chemistry, 143, 398-404.

Silva, M. P., Gomes, F. S., Freire Junior, M., & Cabral, L. M. (2014). Avaliação dos efeitos da radiação gama na conservação da qualidade da polpa de amora-preta (Rubus spp. L.). Revista Brasileira de Fruticultura, 36(3), 620-627.

Somogyi, M. (1945). A new reagent for the determination of sugar. The Journal of Biological Chemistry, 160(1): 61-68.

Talcott, T. S., & Howard, R. L. (1999). Phenolic autoxidation is responsible for color degradation in processed carrot puree. Journal of Agriculture and Food Chemistry, 47, 2109-2115.

Tezotto-Uliana, J. V., Berno, N. D., Saji, F. R. Q., & Kluge, R. A. (2013). Gamma radiation: An efficient technology to conserve the quality of fresh raspberries. Scientia Horticulturae, 164, 348–352.

Virgolin, L. B. (2015). Caracterização físico-química de polpas de frutas do bioma Amazônia. (Masters dissertation, Universidade Estadual Paulista).

Youssef, K. A., Hammad, A. I., Abd Elkalek, H. H., & Abd El-Kader, R. M. (2011). Ensure microbial safety and extending shelf-life of tomato juice by γ irradiation. Nature and Science, 11,154-163.

Downloads

Published

27/06/2020

How to Cite

ANDRADE, R. O. de; LIMA, G. S. de; OLIVEIRA, S. R. de; LIMA, A. R. C. de; ARAÚJO, A. C. de; ARAÚJO, F. dos S.; GOMES, J. P.; ROCHA, A. P. T. Physicochemical, microbiological and bioactive evaluations of ‘Araçá-Boi’ (Eugenia stipitata Mc Vaugh) pulp exposed to Gamma Irradiation. Research, Society and Development, [S. l.], v. 9, n. 8, p. e131985453, 2020. DOI: 10.33448/rsd-v9i8.5453. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/5453. Acesso em: 14 nov. 2024.

Issue

Section

Agrarian and Biological Sciences