Computational simulation of soybean particles flow in a hopper using computational fluid dynamics (CFD) and discrete elements method (DEM)
DOI:
https://doi.org/10.33448/rsd-v9i8.5463Keywords:
Computational simulation; Soybean; Hopper; Discharge time.Abstract
The hoppers are the most common structures used in storage units for agricultural products such as grains and cereals. The soybean, which is one of the most common products in Brazil spend most of their time in a hopper between the stages of picking and shipment. Problems such as damage to the hopper structures during the outflow are factors that have been the subject of studies using computational models. Computational Fluid Dynamics (CFD) has played a big role in gas-solid systems study, together with the Discrete Element Method (DEM). This method manages both fluid phase as the solid phase, which in this case is granular, through the Eulerian and Lagrangian approach. The DEM is based on the interaction between the particles and each one is separately monitored. This work aims to calibrate the parameters of the spring-dashpot model, in the granular dynamics of fluids study, which influences the contact between the soy particles in the silo. For this purpose, a comparison was made of the experimental discharge time of soybeans into a hopper, with the time resulting from 27 simulations generated by a central composite design (CCD). Through the analysis of the simulations and statistics, it was possible to identify the factors that influence whether or not the time of discharge and establish a calibration of these parameters that best describe the experimental results.
References
Almeida, N.P., Tavares, F.P., & Santos, K.G. (2015). Dinâmica das partículas de soja em tambor rotativo de bancada empregando elementos discretos. In XXXVII Congresso Brasileiro de Sistemas Particulados, ENEMP 2015 [=Blucher Engineering Proceedings]. Vol. 2, pp. 47-65. São Paulo: Blucher. https://doi.org/10.5151/ENEMP2015-MS-404.
Araújo, B.S.A. (2014). Fluidodinâmica Computacional dos Regimes de Escoamento do Leito de Jorro-Fluidizado com Tubo Draft. [Trabalho de Conclusão de Curso, Universidade Federal do Triângulo Mineiro]. Uberaba, MG, Brasil.
Araújo, B. S. A. & Santos, K. G. (2017). CFD Simulation of Different Flow Regimes of the Spout Fluidized Bed with Draft Plates. Materials Science Forum, 899, 89-94.
Balevičius, R., Kačianauskas, R., Mrózc, Z., & Sielamowicz, I. (2011). Analysis and DEM simulation of granular material flow patterns in hopper models of different shapes. Advanced Powder Technology, 22(2), 226-235.
Batista, C. S. (2009). Estudo teórico e experimental do fluxo de sólidos particulados em silos verticais. [Doctoral Dissertation, Universidade Federal de Campina Grande]. Campina Grande, PB, Brasil. UFCG Repository.
Batista Júnior, R.; Vieira Neto, J. L.; & Santos, K. G. (2019). Estudos de simulação CFD-DEM em um Leito de Jorro Cônico. Revista Brasileira de Ciência, Tecnologia e Inovação, 4, 284-294.
Béttega, R.; Barrozo, M.; Corrêa, R.; & Freire, J. (2013). CFD simulation of heat transfer inside packed beds: Evaluation of effective thermal conductivity, JP Journal of Heat and Mass Transfer, 8(2), 137-148.
Bortolotti, C.T.; Santos, K.G.; Francisquetti, M.C.C.; Duarte, C.R.; & Barrozo, M.A.S. (2013). Hydrodynamic study of a mixture of west Indian cherry residue and soybean grains in a spouted bed. The Canadian Journal of Chemical Engineering, 91(11), 1871-1880.
Brown, C.J. & Nielsen, J. (1998). Silos: fundamentals of theory, behaviour and design. London: E & FN SPON. 836p.
Calil Junior, C. & Cheung, A.B. (2007). Silos: pressões, fluxo, recomendações para o projeto e exemplos de cálculo. ISBN: 978-85-85205-71-3. São Carlos: EESC-USP. 232p..
Cheung, A. B. (2007). Modelo estocástico de pressões de produtos armazenados para a estimativa da confiabilidade estrutural de silos esbeltos. [Doctoral Dissertation, Universidade de São Paulo]. São Carlos, SP, Brasil. Repository. https://teses.usp.br/teses/ disponiveis/18/18134/tde-30102007-213438/publico/Tese_Andres_Batista_Cheung.pdf
Cundall, P.A., & Strack, O.D.L. (1979). A discrete numerical model for granular assemblies. Geotechnique, 29(1), 47-65.
Cunha, F.G.; Santos, K.G.; Ataíde, C.H.; Epstein, N.; & Barrozo, M.A.S. (2009). Annatto Powder Production in a Spouted Bed: An Experimental and CFD Study. Industrial & Engineering Chemistry Research, 48, 976-982.
Cunha, R.N.; Santos, K.G.; Lima, R.N.; Duarte, C.R.; & Barrozo, M.A.S. (2016). Repose angle of monoparticles and binary mixture: An experimental and simulation study. Powder Technology, 303, 203-211.
DIN 1055 (1987). Design loads for buildings: loads in silo bins. Berlin: Deutsche Norm. 6p.
Gravena, G.F.; Vieira Neto, J.L.; Santos, K.G.; & Silvério, B.C. (2019). Estudo da influência dos coeficientes de atrito estático e fricção de rolamento em simulações DEM de tambores rotativos com suspensores. Brazilian Journal of Development, 5, 20800-20811.
Höhner, D. Wirtz, S., & Scherer, V. (2015). A study on the influence of particle shape on the mechanical interactions of granular media in a hopper using the Discrete Element Method. Powder Technology, 278, 286-305.
Jenike, A.W. (1964). Storage and flow of silos. Bulletin 123. Salt Lake City: University of Utah. 89p.
Justin, G.H. (2012). Aplicação da fluidodinâmica computacional na avaliação da hidrodinâmica de estágio em colunas de destilação. [Master’s Thesis, Universidade Federal de São Carlos]. São Carlos, SP, Brasil. UFSCar Repository. https://repositorio.ufscar.br/handle/ufscar/4097?show=full.
Krawczyk, P. & Badyda, K. (2011). Two-dimensional CFD modeling of the heat and mass transfer process during sewage sludge drying in a solar dryer, Archives of Thermodynamics, 32, 3-16.
Lima, R.F. (2014). Modelagem matemática do escoamento de grãos de soja em um secador com fluxo misto usando o método dos elementos discretos. [Master’s Thesis, Universidade Regional do Noroeste do Estado do Rio Grande do Sul]. Ijuí, RS, Brasil. UNIJUÍ Repository.
Mantegazini, I.S. & Romero, O.J. (2019). Analysis of the flow in horizontal injector wells with profile equalization completion, Research, Society and Development, 8(9):e50891327.
Marques, I.I.D.R. (2013). Investigação do Leito de Jorro como Reator em Potencial de Pirólise de Partículas Cartonadas. [Master’s Thesis, Universidade Federal de São Mateus]. São Mateus, ES, Brasil, UFES, Repository. http://portais4.ufes.br/posgrad/teses/tese_6749_Icaro%20Marques.pdf.
Medeiros, I.F. (2012). Características de fluxo e vazão de descarga em silos verticais. [Master’s Thesis, Universidade Federal de Campina Grande]. Campina Grande, PB, Brasil. UFCG Repository. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1078.
Müller, C.R.; Scott, S.A.; Holland, D.J.; Clarke, B.C.; Sederman, A.J.; Dennis, J.S.; & Gladden, L.F. (2009). Validation of a discrete element model using magnetic resonance measurements. Particuology, 7(4), 297-306.
Neto, J.L. Vieira; Martins, A.L.; Neto, A. Silveira; Ataíde, C.H.; & Barrozo, M.A.S. (2011). CFD applied to turbulent flows in concentric and eccentric annuli with inner shaft rotation. The Canadian Journal of Chemical Engineering. 89, 636-646.
Palma, G. (2005). Pressões e Fluxo em Silos Esbeltos (h/d 1.5). [Master’s Thesis, Universidade de São Paulo]. São Carlos, SP, Brasil. USP Repository. https://www.teses.usp.br/teses/disponiveis/18/18134/tde-09082005-141400/pt-br.php.
Pereira, A.S. et al. (2018). Metodologia do trabalho científico. [e-Book]. Santa Maria. Ed. UAB/NTE/UFSM. Available at: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Accessed on: April 4th, 2020.
Pereira, E.F.S. & Góis, L.M.N. (2020). Simulation of un industrial waste treatment tank, Research, Society and Development, 9(4), e180942542.
Rocha, A.A.; Stoppe, A.C.R.; Silvério, B.C.; Santos, K.C.; & Vieira Neto, J.L. (2020). Drying of malt residues in a solar greenhouse and in a fixed bed solar dryer. Research, Society and Development, 9(7):1-27, e447974335.
Santos, K.G.; Ferreira, L.V.; Santana, R.C.; & Barrozo, M.A.S. (2017). CFD simulation of spouted bed working with a size distribution of sand particles: segregation aspects. Materials Science Forum, 899, 95-100.
Santos, K.G.; Francisquetti, M.C.C.; Malagoni, R.A.; & Barrozo, M.A.S. (2015). Fluid Dynamic Behavior in a Spouted Bed with Binary Mixtures Differing in Size. Drying Technology, 33(14), 1746-1757.
Silvério, B.C.; Santos, K.G.; Duarte, C.R.; & Barrozo, M.A.S. (2014). Effect of the Friction, Elastic, and Restitution Coefficients on the Fluid Dynamics Behavior of a Rotary Dryer Operating with Fertilizer. Industrial & Engineering Chemistry Research, 53(21), 8920-8926.
Stoppe, A.C.R.; Neto, J.L.V.; & Santos, K.G. (2020). Development of a fixed bed solar dryer: experimental study and CFD simulation. Research, Society and Development, 9(3), e123932667.
Tegenaw, P.D.; Gebrehiwot, M.G.; & Vanierschot, M. (2019). On the comparison between computational fluid dynamics (CFD) and lumped capacitance modeling for the simulation of transient heat transfer in solar dryers. Solar Energy, 184, 417-425.
Vieira, L.H.S. (2009). Estudo teórico e experimental de pressões em tremonhas cônicas e piramidais de silos metálicos esbeltos. [Master’s Thesis, Universidade Federal de Lavras]. Lavras, MG, Brasil. UFLA Repository.
Vieira Neto, J.L.; Duarte, C.R.; Murata, V.V.; & Barrozo, M.A.S. (2008). Effect of a Draft Tube on the Fluid Dynamics of a Spouted Bed: Experimental and CFD Studies. Drying Technology, 26(3), 299-307.
Vieira Neto, J.L.; Martins, A.L.; Ataíde, C.H.; & Barrozo, M.A.S. (2014). The effect of the inner cylinder rotation on the fluid dynamics of non-Newtonian fluids in concentric and eccentric annuli. Brazilian Journal of Chemical Engineering, 31, 829-838.
Vieira Neto, J.L.; Costa, D.D.L.; Souza, L.V.; Pires, R.F.; Souza, D.L.; Silvério, B.C.; & Santos, K.G. (2017). A Fluid Dynamic Study in a Rotating Disk Applied in Granulation of Fertilizers. Materials Science Forum, 899, 142-147.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.