Modelling behavior changes during the sars-cov-2 spreading: a case study considering the delay in the tests
DOI:
https://doi.org/10.33448/rsd-v9i7.5475Keywords:
Covid-19; Epidemic model; Behavioral model; Social isolation.Abstract
This article presents an epidemic-behavior model for the SARS-CoV-2 spreading in Amapá employing a generalization of the SIR model, which captures the behavioral response of the population during the epidemic evolution through a reduction factor δ in the contagion rate. The results of the model's validation step with empirical data show that δ = [0.614,0.638] indicating that the behavioral response was responsible for a reduction of ~[36,39]% in the epidemic transmissibility. Subsequently, we provide an analysis of the scenarios that may emerge if the isolation measures are lifted tR days after the first peak considering a new reduction factor δR > δ. The results indicate that the careful exit (δR ≤ 0.80) from the confinement measures with 3 weeks (tR = 21) after the first peak can still trigger a second peak, but with a smaller size than the first one.
References
Agência Brasil. (2020a). Estudo indica eficácia do isolamento social contra o novo coronavírus. [internet]. Disponível em: <https://agenciabrasil.ebc.com.br/saude/noticia/2020-05/estudo-indica-eficacia-do-isolamento-social-contra-o-novo-coronavirus> Acesso em: 01/06/20
Agência Brasil. (2020b). Covid-19: Amapá restringe circulação e adota rodízio de veículos .[internet]. Disponel em: <https://agenciabrasil.ebc.com.br/saude/noticia/2020-05/covid-19-amapa-restringe-circulacao-e-adota-rodizio-de-veiculos-0> Acesso em: 01/06/20
Amapá. (2020a). Painel Coronavírus. [internet]. Disponível em <http://painel.corona.ap.gov.br/> Acesso em: 05/06/20
Amapá. (2020b). A cada 10 exames, 7 testam positivos para coronavírus no Amapá. [internet]. Disponível em <https://www.portal.ap.gov.br/noticia/0505/a-cada-10-exames-7-testam-positivos-para-coronavirus-no-amapa> acesso em: 05/06/20
Bagal, D. K., Rath A., Barua A., & Patnaik D. (2020). Estimating the parameters of SIR model of Covid-19 cases in India during lock down periods. MedRxiv. Disponível em: <https://www.medrxiv.org/content/10.1101/2020.06.03.20120899v1> acesso em: 20/05/20 DOI: https://doi.org/10.1101/2020.06.03.20120899
Batista, M. (2020). fitVirus-Covid-19. MATLAB Central File Exchange. [Internet]. Disponível em: <https://www.mathworks.com/matlabcentral/fileexchange /74658-fitviruscovid19> acesso em 15/05/2020.
Bastos, S. B., Cajueiro, D. O. (2020). Modeling and forecasting the early evolution of the Covid-19 pandemic in Brazil. Arxiv preprint. Disponível em <https://arxiv.org/abs/2003.14288> acesso em: 01/06/20
Boudrioua, M. S., & Boudrioua A. (2020). Predicting the Covid-19 epidemic in Algeria using the SIR model. MedRxiv. Disponível em: https://www.medrxiv.org/content/10.1101/ 2020.04.25. 20079467v5 acesso em: 20/05/20 DOI: https://doi.org/10.1101/2020.04.25.20079467
Brasil. Ministério da Saúde. (2020a). Brasil confirma primeiro caso da doença. [internet]. Disponível em: <https://www.saude.gov.br/noticias/agencia-saude/46435-brasil-confirma-primeiro-caso-de-novo-coronavirus> acesso em: 31/05/20
Brasil. Ministério da Saúde. (2020b). Doença pelo Coronavírus 2019 Ampliação da Vigilância, Medidas não Farmacológicas e Descentralização do Diagnóstico Laboratorial. Boletim Epidemiológico 05. Ministério da Saúde: Brasília. [internet]. Disponível em: <https://portalarquivos.saude.gov.br/images/pdf/2020/marco/24/03--ERRATA---Boletim-Epidemiologico-05.pdf> acesso em: 31/05/20
Dias, N. L., Silva, E. V., Pires, M. A., Chaves, D., Sanada, K. L., Fecury, A. A., Dias, C. A. G. M, Oliveira, E., Dendasck, C. V., & Leal, S. D. (2020). Prediction of the propagation of SARS-CoV-2 in Amapá State, Amazon Region, Brazil, by mathematical modeling. Revista Científica Multidisciplinar Núcleo do Conhecimento. 6(5): 73-95. DOI: 10.32749
Freitas, A. S., Silva, L. S., & Sandes, S. S. L. (2020). New SIR model used in the projection of Covid-19 cases in Brazil. MedRxiv. Disponível em: <https://www.medrxiv.org/content/10.1101/2020.04.26.20080218v2> acesso em: 20/05/20 DOI: https://doi.org/10.1101/2020.04.26.20080218
Funk, S., Salathé, M., & Jansen V. A. A. (2010). Modelling the influence of human behaviour on the spread of infectious diseases: a review, J. R. Soc. Interface, 7: 1247-1256).
Hoertel N., Blachier, M., Blanco, C., Olfson, M., Massetti, M., Rico, M. S., Limosin, F., & Leleu, H. (2020). Lockdown exit strategies and risk of a second epidemic peak: a stochastic agent-based model of SARS-CoV-2 epidemic in France. MedRxiv preprint. Disponível em <https://doi.org/10.1101/2020.04.30.20086264> acesso em 31/05/20 DOI: 10.1101/2020.04.30.20086264.
Kissler,S. M., Tedijanto, C., Goldstein, E., Grad, Y. H., Lipsitch, M.. (2020). Projecting the transmission dynamics of SARS-CoV-2 through the post-pandemic period. MedRxiv preprint. Disponível em <https://www.medrxiv.org/content/10.1101/2020.03.04.20031112v1> acesso em: 31/05/20 DOI: 10.1101/2020.03.04.20031112.
Li, E., Pei, S., Chen, B., Song, Y., Zhang, T., Yang, W., Shaman, J.. (2020). Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2), Science, published online March 16, 2020 DOI: 10.1126/science.abb3221
Nesteruk, I. (2020). SIR-simulation of Corona pandemic dynamics in Europe. ResearchGate preprint. Disponível em <https://www.researchgate.net/publication/340829180_SIR-simulation_of_Corona_pandemic_dynamics_in_Europe> acesso em 31/05/20. DOI: 10.13140/RG.2.2.13542.16969.
OMS. (2020a). Coronavirus disease (COVID-19) Situation Report – 132. [internet]. Disponível em: <https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200531-covid-19-sitrep-132.pdf?sfvrsn=d9c2eaef_2> acesso em: 31/05/20
PAHO. (2020a). Folha informativa – COVID-19 (doença causada pelo novo coronavírus). [internet]. Disponível em: <https://www.paho.org/bra/index.php?option=com_content&view= article&id= 6101:covid19&Itemid=875> acesso em: 31/05/20
PAHO. (2020b). Considerações sobre ajustes das medidas de distanciamento social e medidas relativas a viagens no contexto da resposta à pandemia de Covid-19. [internet]. Disponível em: <https://iris.paho.org/bitstream/handle/10665.2/52045/OPASBRA COVID1920039a_%20por.pdf?sequence=8 > acesso em: 31/05/20
Prado, M., Bastos, L., Batista, A., Antunes, B., Baião, F., Maçaira, P., Hamacher, S., & Bozza, F. (2020). Análise de subnotificação do número de casos confirmados da Covid-19 no Brasil. Nota Técnica 7. [internet]. Disponível em <https://cdn.msnoticias.com.br/ upload/ckeditor/ images/nt7- subnotificacao-nota-dia-11-abr-2020.pdf> acesso em: 01/06/20
Pedersen, M. G., & Meneghini, M. (2020). Quantifying undetected COVID-19 cases and effects of containment measures in Italy. ResearchGate Preprint. Disponível em <https://www.researchgate.net/publication/339915690_Quantifying_undetected_COVID-19_cases_and_effects_of_containment_measures_in_Italy_Predicting_phase_2_dynamics> acesso em: 31/05/20 DOI: 10.13140/RG.2.2.11753.85600
Peng, L., Yang, W., Zhang, D., Zhuge, C., & Hong, L. (2020). Epidemic analysis of COVID-19 in China by dynamical modeling. arXiv preprint Disponível em: <https://arxiv.org/abs/2002.06563> acesso em: 31/-5/20
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R.. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 09 fev. 2020.
Pires, M. A., Crokidakis, N., Cajueiro, D. O., Menezes, M. A., & Queirós, S. M. D. (2020). What is the potential for a second peak in the evolution of SARS-CoV-2 in Brazil? Insights from a SIRASD model considering the informal economy. Arxiv preprint. Disponível em
Rdocumentation. (2020). General-purpose Optimization. [internet]. Disponível em <https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/optim> acesso em: 20/05/20
Rogers, L. C. G. (2020). Ending the covid-19 epidemic in the united kingdom. ArXiv preprint. Disponível em:
Roohani, R. T., & Priyanka, M. (2019). Rumor Propagation: A State-of-the-art Survey of Current Challenges and Opportunities. 2nd International Conference on Intelligent Communication and Computational Techniques (ICCT), Jaipur, India,pp. 64-69, DOI: 10.1109/ICCT46177.2019.8969023.
Silva, E. L., Menezes E. M. (2005). Metodologia da pesquisa e elaboração de dissertação. – 3. ed. rev. atual. – Florianópolis: Laboratório de Ensino a Distância da UFSC.
Sinkala, M., Nkhoma, P., Zulu, M., Kafita, D., Tembo, R., & Daka, V. (2020). The Covid-19 Pandemic in Africa: Predictions using the SIR Model Indicate the Cases are Falling. MedRxiv. Disponível em: https://www.medrxiv.org/content/10.1101/2020.06.01.20118893v2 acesso em: 20/05/20 DOI: https://doi.org/10.1101/2020.06.01.20118893
Soetaert, K., Petzoldt, T., Setzer, R. W. (2020). Solving Differential Equations in R: Package deSolve. Journal of Statistical Software. DOI: 10.18637/jss.v033.i09
Tasnim, S., Hossain, M. M., & Hoimonty, M. (2020). Impact of Rumors or Misinformation on Coronavirus Disease (Covid-19) in Social Media. SocArchiv. Disponível em: <https://osf.io/preprints/socarxiv/uf3zn/> acesso em: 30/05/20 DOI: https://doi.org/10.31235/ osf.io/uf3zn
Timoteo, C., Fanelli, D., & Piazza F. (2020). Covid-19: The unreasonable effectiveness of simple models. ResearchGate Preprint. disponível em <https://www.researchgate.net /publication/341554295_The_unreasonable_effectiveness_of_simple_models/> acesso em: 31/05/20
Verelst, F., Willem, L., & Beutels, P. (2016). Behavioural change models for infectious disease transmission: a systematic review (2010–2015). The Royal Society. 13(125). dec, 2016. Disponível em: <https://doi.org/10.1098/rsif.2016.0820> acesso em: 20/05/20
Zhang, Y., You, C., Cai, Z., Sun, J., Hu, W., & Zhou, X. H. (2020). Prediction of the COVID-19 outbreak based on a realistic stochastic model. medRxiv preprint. Disponível em: <https://www.medrxiv.org/content/10.1101/2020.03.10.20033803v1> acesso em: 31/05/20 DOI: https://doi.org/10.1101/2020.03.10.20033803
Wang, Z., Andrews, M. A., Wu, Z. X., Wang, L., & Bauch, C.T. (2015). Coupled disease–behavior dynamics on complex networks: A review. Physics of Life Reviews. 15:.1-29, December. Disponível em: <https://doi.org/10.1016/j.plrev.2015.07.006> acesso em: 20/05/20
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.