Analysis of the dispersion of performance indicators for decision making between two fuzzy modeling tools
DOI:
https://doi.org/10.33448/rsd-v9i9.5531Keywords:
Dispersion analysis; Standard deviation; Fuzzylite library; Fuzzy inference modelsAbstract
Analyzing data processing methods and ensuring consistent results is hard work for scientists, the fact is that the optimization of a process makes a difference regardless of which area is being worked on. There are tools that consolidate studies like this, one of them is the comparative method using dispersion analysis that was used in this research when working with the School Adventurers application, which is one of the objects of study, with which the inferences agent called Fuzzylite was analyzed. The case study was a good option for the research when analyzing the inference methods modeled in the app and making a comparison with the MatLab® Fuzzy Toolbox, so the objective of the present research is to analyze the two mentioned tools and point out which one had the best performance using the same Fuzzy modeling. Through the dispersion analysis it was possible to identify a better result for the model used in Fuzzylite.
References
Amiri, A. M., Nadimi, N., & Yousefian, A. (2020). Comparing the efficiency of different computation intelligence techniques in predicting accident frequency. IATSS Research. doi: https://doi.org/10.1016/j.iatssr.2020.03.003
Araújo, A. F. d. (2020). Representações sociais de educadores das Escolas Família Agrícola (EFAs) do Brasil e da Argentina sobre o uso pedagógico das tecnologias.
Arji, G., Ahmadi, H., Nilashi, M., A. Rashid, T., Hassan Ahmed, O., Aljojo, N., & Zainol, A. (2019). Fuzzy logic approach for infectious disease diagnosis: A methodical evaluation, literature and classification. Biocybernetics and Biomedical Engineering, 39(4), 937-955. doi: https://doi.org/10.1016/j.bbe.2019.09.004
Bozhinoski, D., Di Ruscio, D., Malavolta, I., Pelliccione, P., & Crnkovic, I. (2019). Safety for mobile robotic systems: A systematic mapping study from a software engineering perspective. Journal of Systems and Software, 151, 150-179. doi: https://doi.org/10.1016/j.jss.2019.02.021
Chen, M., Wu, C., Tang, X., Peng, X., Zeng, Z., & Liu, S. (2019). An efficient deterministic heuristic algorithm for the rectangular packing problem. Computers & Industrial Engineering, 137, 106097. doi: https://doi.org/10.1016/j.cie.2019.106097
Chen, Z., Zhou, Y., & Xiang, Y. (2019). Towards efficiently searching triple product property triples: Deterministic and randomized algorithms. Applied Soft Computing, 75, 349-357. doi: https://doi.org/10.1016/j.asoc.2018.11.023
Clegg, J. R., Wagner, A. M., Shin, S. R., Hassan, S., Khademhosseini, A., & Peppas, N. A. (2019). Modular fabrication of intelligent material-tissue interfaces for bioinspired and biomimetic devices. Progress in Materials Science, 106, 100589. doi: https://doi.org/10.1016/j.pmatsci.2019.100589
De Oliveira Ferreira, D. A., & De Oliveira Ferreira, J. L. (2020). WATER AND OIL AUTOMATIC SEPARATION SYSTEM USING FUZZY CONTROL. ITEGAM-JETIA, 6(21), 41-46. doi: https://dx.doi.org/10.5935/2447-0228.20200005
De Souza, E. O., Fortes, M. Z., & de Lima, G. B. A. (2020). APPLICATION BASED ON FUZZY LOGIC TO EVALUATE IMPLEMENTATION OF TPM IN INDUSTRIES. ITEGAM-JETIA, 6(22), 35-41. doi: https://dx.doi.org/10.5935/2447-0228.20200015
Dhunny, A. Z., Doorga, J. R. S., Allam, Z., Lollchund, M. R., & Boojhawon, R. (2019). Identification of optimal wind, solar and hybrid wind-solar farming sites using fuzzy logic modelling. Energy, 188, 116056. doi: https://doi.org/10.1016/j.energy.2019.116056
Droste, M., Kutsia, T., Rahonis, G., & Schreiner, W. (2019). McCarthy-Kleene fuzzy automata and MSO logics. Information and Computation, 104499. doi: https://doi.org/10.1016/j.ic.2019.104499
Elleuch, H., & Wali, A. (2019). UNWEARABLE MULTI-MODAL GESTURES RECOGNITION SYSTEM FOR INTERACTION WITH MOBILE DEVICES IN UNEXPECTED SITUATIONS. IIUM Engineering Journal, 20(2), 142-162.
Eslami Giski, Z., Ebrahimzadeh, A., & Markechová, D. (2019). Rényi entropy of fuzzy dynamical systems. Chaos, Solitons & Fractals, 123, 244-253. doi: https://doi.org/10.1016/j.chaos.2019.01.039
Faheem, M., Butt, R. A., Raza, B., Ashraf, M. W., Ngadi, M. A., & Gungor, V. C. (2019). Energy efficient and reliable data gathering using internet of software-defined mobile sinks for WSNs-based smart grid applications. Computer Standards & Interfaces, 66, 103341. doi: https://doi.org/10.1016/j.csi.2019.03.009
Grechi, M. S., Baptista, A., & Magalhães, D. (2020). Aplicativo móvel para avaliação da qualidade de vida em idosos.
Guha, R., Ghosh, M., Chakrabarti, A., Sarkar, R., & Mirjalili, S. (2020). Introducing clustering based population in Binary Gravitational Search Algorithm for Feature Selection. Applied Soft Computing, 93, 106341. doi: https://doi.org/10.1016/j.asoc.2020.106341
Gurkaynak, G., Yilmaz, I., & Haksever, G. (2016). Stifling artificial intelligence: Human perils. Computer Law & Security Review, 32(5), 749-758. doi: https://doi.org/10.1016/j.clsr.2016.05.003
Haddock, J., & O'Keefe, R. M. (1990). Using artificial inteligence to facilitate manufacturing systems simulation. Computers & Industrial Engineering, 18(3), 275-283. doi: https://doi.org/10.1016/0360-8352(90)90049-R
Huang, D., Hong, L., & Liu, C. (2020). Computational technique to free vibration response in a multi-degree of freedom parametric system. Mechanical Systems and Signal Processing, 142, 106777. doi: https://doi.org/10.1016/j.ymssp.2020.106777
Lee, C. C. (1990). Fuzzy logic in control systems: fuzzy logic controller. I. IEEE Transactions on systems, man, and cybernetics, 20(2), 404-418. doi: https://doi.org/10.1109/21.52551
Lima, H. D., Lima, L. A. d. P., Calsavara, A., Eberspächer, H. F., Nabhen, R. C., & Duarte, E. P. (2019). Beyond scalability: Swarm intelligence affected by magnetic fields in distributed tuple spaces. Journal of Parallel and Distributed Computing, 123, 90-99. doi: https://doi.org/10.1016/j.jpdc.2018.09.004
Lisbôa, E. G., Lisbôa, É. G., Lobo, M. A. A., & Bello, L. A. L. (2020). Indicadores de Desenvolvimento Sustentável: Uma Análise Quantitativa utilizando o modelo de Regressão Linear Múltipla / Sustainable Development Indicators: A Quantitative Analysis Using the Multiple Linear Regression Model. Brazilian Journal of Development, 6.
Magdalena, L. (2019). Semantic interpretability in hierarchical fuzzy systems: Creating semantically decouplable hierarchies. Information Sciences, 496, 109-123. doi: https://doi.org/10.1016/j.ins.2019.05.016
Matoski, A., Veiga, B. P., Silva, M. T. Q. S. d., Ribeiro, D. G. F., & Alberti, M. E. (2020). Uso de dispositivos móveis como ferramenta de aprendizado: riscos e oportunidades/ Use of mobile devices as a learning tool: risks and opportunities. Brazilian Journal of Development, 6.
MENDONÇA, K. H., SALVINO, L. R., MONTEIRO, A. C. L., GOMES, H. P., & SALVINO, M. M. (2019). CONTROLADOR FUZZY APLICADO EM UM SISTEMA DESCENTRALIZADO NA OPERAÇÃO OTIMIZADA DE REDES SETORIZADAS COM BOMBEAMENTO DIRETO. Anais da Sociedade Brasileira de Automática, 1(1).
Menezes, S., & Roza, J. d. (2016). Genius Math: uma aplicação mobile para auxiliar a aprendizagem da matemática na pré-escola. Paper presented at the Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE).
Moazzemi, K., Maity, B., Yi, S., Rahmani, A. M., & Dutt, N. (2019). HESSLE-FREE: Heterogeneous Systems Leveraging Fuzzy Control for Runtime Resource Management. ACM Transactions on Embedded Computing Systems (TECS), 18(5s), 1-19.
Muklason, A., Irianti, R. G., & Marom, A. (2019). Automated Course Timetabling Optimization Using Tabu-Variable Neighborhood Search Based Hyper-Heuristic Algorithm. Procedia Computer Science, 161, 656-664. doi: https://doi.org/10.1016/j.procs.2019.11.169
Nogueira, E. L., & Nascimento, M. H. R. (2017). Inventory control applying sales demand prevision based on fuzzy inference system. Journal of Engineering and Technology for Industrial Applications (JETIA), 3. doi: https://dx.doi.org/10.5935/2447-0228.20170060
Ojha, V., Abraham, A., & Snášel, V. (2019). Heuristic design of fuzzy inference systems: A review of three decades of research. Engineering Applications of Artificial Intelligence, 85, 845-864. doi: https://doi.org/10.1016/j.engappai.2019.08.010
Oliveira, M. C. d. M., Milani, E. A., & Silva, J. F. (2020). A ESTATÍSTICA COMO FERRAMENTA PARA AUXILIAR A TOMADA DE DECISÃO EM UMA PEQUENA EMPRESA: O USO DA REGRESSÃO LINEAR MÚLTIPLA E O SOFTWARE R. REVISTA FAFIBE ON-LINE, 12.
Oprea, M. (2020). A general framework and guidelines for benchmarking computational intelligence algorithms applied to forecasting problems derived from an application domain-oriented survey. Applied Soft Computing, 89, 106103. doi: https://doi.org/10.1016/j.asoc.2020.106103
Osuna, E., Rodríguez, L.-F., Gutierrez-Garcia, J. O., & Castro, L. A. (2020). Development of computational models of emotions: A software engineering perspective. Cognitive Systems Research, 60, 1-19. doi: https://doi.org/10.1016/j.cogsys.2019.11.001
Pagliosa, A. L. (2003). Obtenção das funções de pertinência de um sistema neurofuzzy modificado pela rede de Kohonen.
Patricia Villareal-Freire, A., Felipe Aguirre Aguirre, A., & Alberto Collazos Ordoñez, C. (2019). Reverse engineering for the design patterns extraction of android mobile applications for attention deficit disorder. Computer Standards & Interfaces, 61, 147-153. doi: https://doi.org/10.1016/j.csi.2018.07.001
RODRIGUES, J., MARINHO, L., & ALCÂNTARA, O. (2011). SIMULAÇÃO DE SISTEMA ROBÓTICO MÓVEL E NEBULOSO COM SOFTWARES LIVRES.
Salgado, S. A. B., BARROS, L., & ESMI, E. M. (2019). Uma Introdução as Equações Diferenciais Fuzzy. II WMAP.
Santos, G. C. d., Thomaz, P. S., Ribeiro, F. M., Araújo, J. F., & Mattos, V. L. D. d. (2014). INFLUÊNCIA DO MÉTODO DE DEFUZZIFICAÇÃO EM MENSURAÇÕES COM CONTROLADORES FUZZY Blucher Marine Engineering Proceedings, 1.
Sauerländer-Biebl, A., Brockfeld, E., Suske, D., & Melde, E. (2017). Evaluation of a transport mode detection using fuzzy rules. Transportation Research Procedia, 25, 591-602. doi: https://doi.org/10.1016/j.trpro.2017.05.444
Silva, Í. R. S., Neto, J. V. C., Junior, P. O. S., Sanches, A. E., Junior, J. D. A. B., & de Alencar, D. B. (2019). Android app for Teaching and Learning Math for Elementary School Children. International Journal of Advanced Engineering Research and Science, 6(3). doi: https://dx.doi.org/10.22161/ijaers.6.3.23
Silva, M., Cardoso, M. A., Machado, M. C., & Ferreira, A. P. L. (2019). SISTEMA DE INFERÊNCIA FUZZY PARA ESTIMATIVA DE CRESCIMENTO POPULACIONAL. Anais do Salão Internacional de Ensino, Pesquisa e Extensão, 11(2).
Sindhu, A., & Radha, V. (2020). A Method for Removing PET/CT Imaging Artifact Using Combination of Standard Deviation and Computational Geometry Technique. Procedia Computer Science, 167, 969-978. doi: https://doi.org/10.1016/j.procs.2020.03.396
Sousa, M. P. A. D., Lacerda, M. d. A., & Faria, A. C. C. (2020). INTERNET DAS COISAS E SEUS IMPACTOS POSITIVOS NO AMBIENTE EDUCACIONAL. Revista Eletrônica Cosmopolita em Ação, 6.
Souza, J. D. C. D. (2019). Utilização da lógica fuzzy em uma estação de tratamento de água (Bachelor's thesis, Universidade Tecnológica Federal do Paraná).
Taber, R. (1995). The fuzzy systems handbook: a practitioner’s guide to building, using, and maintaining fuzzy systems (Earl Cox). SIAM Review, 37(2), 281-282. doi: https://doi.org/10.1137/1037078
Tsenkova, R., & Toyoda, K. (2001). Artificial Inteligence in Dairy Farming : Near Infrared Approach. IFAC Proceedings Volumes, 34(28), 167-172. doi: https://doi.org/10.1016/S1474-6670(17)32843-4
Wang, L. X. (1997). A course in Fuzzy Systems and Control. New Jersey: Pretice-Hall Internacional. ed: Inc.
Xie, Y., Qiu, M., Zhang, H., Peng, L., & Chen, Z. (2020). Gaussian Distribution based Oversampling for Imbalanced Data Classification. IEEE Transactions on Knowledge and Data Engineering.
Yan, J., Zhang, Z., Lin, K., Yang, F., & Luo, X. (2020). A hybrid scheme-based one-vs-all decision trees for multi-class classification tasks. Knowledge-Based Systems, 198, 105922. doi: https://doi.org/10.1016/j.knosys.2020.105922
Zadeh, L. A. (1988). Fuzzy logic. Computer, 21(4), 83-93. doi: https://doi.org/10.1109/2.53
Zago, L. D. A. (2019). Modelagem matemática por meio de Sistemas Fuzzy: um Instrumento para avaliação de autismo.
Zhang, Y., Jin, Z., Zhao, X., & Yang, Q. (2020). Backtracking search algorithm with Lévy flight for estimating parameters of photovoltaic models. Energy Conversion and Management, 208, 112615. doi: https://doi.org/10.1016/j.enconman.2020.112615
Zheng, W., Wang, H., Zhang, Z., & Wang, H. (2019). Adaptive robust finite-time control of mobile robot systems with unmeasurable angular velocity via bioinspired neurodynamics approach. Engineering Applications of Artificial Intelligence, 82, 330-344. doi: https://doi.org/10.1016/j.engappai.2019.04.009
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Ítalo Rodrigo Soares Silva, Paulo Oliveira Siqueira Júnior, Ricardo Silva Parente, Manoel Henrique Reis Nascimento, David Barbosa de Alencar, Jandecy Cabral Leite

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.