Frontal lobe activation in older adults and youngs: an electroencephalographic analysis during exergame for postural balance

Authors

DOI:

https://doi.org/10.33448/rsd-v9i8.5726

Keywords:

Exposure therapy to virtual reality; Electroencephalography; Rehabilitation; Cerebral cortex.

Abstract

Objective: to investigate the frontal lobe cortical activation of older adults and youngs during an exergame session for postural balance. Methodology: cross-sectional study with 20 individuals (10 older adults and 10 youngs) attended exergaming session. Initially, sociodemographic and clinical assessments were carried out and then, an electroencephalographic (EEG) assessment with Emotiv EPOC® during the execution of Nintendo Wii Fit Penguin slide exergame was done. Eight channels of the frontal region and alfa and beta waves were used for analysis. The EEG data was recorded by Emotiv TestBench and imported into MatLab®. SPSS program, Mann-Whitney test and significance level of p<0.05 were used. Results: the mean age of the older adults group (OAG) was 65.1 ± 4.8 years and in the young group (YG) was 22.4 ± 2.3 years. There were no differences in the cortical activation potential between groups for the alpha (p = 0.058) and beta (p = 0.092) waves. There was a greater magnitude in the potential activation of the alpha wave in both groups. For alpha e beta waves, there was one peak activation in F3 channel (left frontal region) in the YG and a greater amount of activation peaks in the OAG, highlighted in F4 channel (right frontal region). Conclusion: cortical activation potential in frontal lobe related to alpha and beta waves in young and older adults does not differ when playing the exergame for postural balance Penguin slide game.

Author Biographies

Nathália Stéphany Araújo Tavares, Universidade Federal do Rio Grande do Norte

Departamento de Fisioterapia

Candice Simões Pimenta de Medeiros, Universidade Federal do Rio Grande do Norte

Departamento de Fisioterapia

Thaiana Barbosa Ferreira Pacheco, Universidade Federal do Rio Grande do Norte

Departamento de Fisioterapia

Isabelle Ananda Oliveira Rego, Universidade Federal do Rio Grande do Norte

Departamento de Fisioterapia

 

Bartolomeu Fagundes de Lima Filho, Universidade Federal do Rio Grande do Norte

Departamento de Fisioterapia

Nathalia Priscila Oliveira da Silva Bessa, Universidade Federal do Rio Grande do Norte

Departamento de Fisioterapia

Kim Mansur Yano, Universidade Federal do Rio Grande do Norte

Departamento de Fisioterapia

Júlio César Paulino de Melo, Universidade Federal do Rio Grande do Norte

Instituto Metrópole Digital (IMD)

Fabrícia Azevêdo da Costa Cavalcanti, Universidade Federal do Rio Grande do Norte

Departamento de Fisioterapia

References

Andrade, A., Luft, C. B., Rolin, M. K. F. B. (2004). O desenvolvimento motor, a maturação das áreas corticais e a atenção na aprendizagem motora. EFDesportes Revista Digital. (10) 78.

Badcock, N. A., Mousikou, P., Mahaja, Y., Lissa, P., Thie, J., McArthur, G, (2013). Validation of the Emotiv Epoc® EEG gaming system for measuring research quality auditory ERPs. PeerJ 1:e38.

Bertolucci, P. H. F., Brucki, S. M. D., Campacci, S. R., Juliano, Y. (1994). O mini-exame do estado mental em uma populacao geral: Impacto da escolaridade. Arquivo Neuropsiquiatria. 52(1), 1–7.

Cook, I. A. I., Bookheimer, S. Y., Mickes, L., Leuchter, A. F., Kumar, A (2007). Aging and brain activation with working memory tasks: an fMRI study of connectivity. Int J Geriatr Psychiatry. 22(4), 332-42.

Diniz, C., Velasques, B., Bittencourt, J., Peressutti, C., Machado, S., Teixeira, S., Santos, J. L., Salles, J. I., Basile, L. F., Anghinah, R., Cheniaux, E., Nard, A. E., Cagy, M., Piedade, R., Arias-Carrión, O., Ribeiro, P. (2012). Cognitive mechanisms and motor control during a saccadic eye movement task: evidence from quantitative eletroencephalography. Arq Neuropsiquiatr. 70(7), 506-513

Eggenberg, P., Wolf, M., Schumann, M., Bruin, E. D. (2016). Exergame and balance training modulate prefrontal brain activity during walking and enhance executive function in older adults. Front Aging Neurosci. 8, 66, 1-16.

Emotiv (2011). Emotiv software development kit user manual for release 1.0.0.3. Hong Kong: Emotiv Ltd.

Fan, Y. T., Fang, Y. W., Chen, Y. P., Leshikar, E. D., Lin, C. P., Tzeng, O. J. L., Huang, H. W., Huang, C. M. (2019). Aging, cognition and the brain: effects of age-related variation in white matter integrity on neuropsychological function. Aging & Mental Health. 23(7):831-9.

Fang, Y., Yue, G. H., Hrovat, K., Sahgal, V., Daly, J. J. (2007). Abnormal cognitive planning and movement smoothness control for a complex shoulder/elbow motor task in stroke survivors. Journal of the Neurological Sciences. 256, 21–29.

Ferreira, T. B., Rego, I. A. O., Campos, T. F., Cavalcanti, F. A. C. (2017). Brain activity during a lower limb functional task in a real and virtual environment: a comparative study. Neurorehabilitation. 40, 391–400.

Knyazev, G. G., Volf, N. V., Belousova, L. V. (2015). Age-related differences in electroencephalogram connectivity and network topology. Neurobiol Aging. 36(5), 1849-59.

Levac, D. E., Galving, J, (2013). When is Virtual Reality “Therapy”?. Archives of Physical Medicine and Rehabilitation. 94, 795-8

Long, X., Liao, W., Jiang, C., Liang, D., Qiu, B., Zhang, L. (2012). Healthy aging: an automatic analysis of global and regional morphological alterations of human brain. Acad Radiol. 19(7):785-93.

Luft, C., Andrade, A. (2006). A pesquisa com EEG aplicada a área de aprendizagem motora. Rev Port Cien Desp. 6(1), 106–115.

Mehrholz, J., Wagner, K., Rutte, K., Meibner, D., Pohl, M. (2007). Predictive Validity and Responsiveness of the Functional Ambulation Category in Hemiparetic Patients After Stroke. Archives of Physical Medicine and Rehabilitation. 88(10), 1314–1319.

Nintendo (2017). Nintendo. Acesso em 2 de fevereiro, em www.nintendo.com

Oliveira, S. M. S., Medeiros, C. S. P., Pacheco, T. B. F., Bessa, N. P. O., Silva, F. G. M., Tavares, N. S. A., Rego, I. A. O., Campos, T. F., Cavalcanti, F. A. C. (2018). Eletroencephalographic chances using virual reality program: techical note. Neurological Research. 40(3),160-5.

Peñasco-Martín, B. L. R-G., A., Gil-Agudo, Á., et al (2010). Application of virtual reality in the motor aspects of neurorehabilitation. Rev Neurol. 51(8), 481-488.

Quandt, L. C., Marshall, P. J., Shipley, T. F., Beilock, S. L., Goldin-Meadow, S. (2012). Sensitivity of alpha and beta oscillations to sensorimotor characteristics of action: An EEG study of action production and gesture observation. Neuropsychologia. 50: 2745–2751.

Sebastián, M., Reales, J. M., Ballesteros, S. (2011). Ageing affects event-related potentials and brain oscillations: A behavioral and electrophysiological study using a haptic recognition memory task. Neuropsychologia. 49 (14), 3967-80.

Schaefer, S. Y., Mutha, P. K., Haaland, K. Y., Sainburg, R. L. (2012). Hemispheric Specialization for movement control produces dissociable differences in online corrections after stroke. Cerebral Cortex. 22, 1407-1419.

Stecklow, M. V., Infantosi, A. F. C., Cagy, M. (2007). Alterações na banda alfa do eletroencefalograma durante imagética motora visual e sinestésica. Arq Neuro-Psiquiatr. 65(4), 1084-8.

Tobaigy, A., Alshehri, M. A., Timmons, S., Helal, O. F. (2018). The feasibility of using exergames as a rehabilitation tool: the attitudes, awareness, opinions and experiences of physiotherapists, and older people towards exergames. J Phys Ther Sci. 30, 555-62.

Published

01/07/2020

How to Cite

TAVARES, N. S. A.; MEDEIROS, C. S. P. de; PACHECO, T. B. F.; REGO, I. A. O.; LIMA FILHO, B. F. de; BESSA, N. P. O. da S.; YANO, K. M.; MELO, J. C. P. de; CAVALCANTI, F. A. da C. Frontal lobe activation in older adults and youngs: an electroencephalographic analysis during exergame for postural balance. Research, Society and Development, [S. l.], v. 9, n. 8, p. e225985726, 2020. DOI: 10.33448/rsd-v9i8.5726. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/5726. Acesso em: 19 nov. 2024.

Issue

Section

Health Sciences