Do plant-growth promoting bacteria contribute to greater persistence of tropical pastures in water deficit? - A review
DOI:
https://doi.org/10.33448/rsd-v9i8.5756Keywords:
PGPB; Water deficit; Grass; Resistance to drought stress; Drought; Tolerance to stress.Abstract
The use of plant-growth promoting bacteria (PGPB) in pastures is a sustainable alternative to increment forage production. Besides, it is an innovative technology that can mitigate the effects of water deficit (WD) in pastures. Currently, WD is one of the main abiotic stressor agents responsible for a negative impact on agricultural production. Permanent or temporary WD imposes limitations on the growth and development of forage plants more than any other environmental factors. Although there have been studies for many years to improve resistance to WD and efficiency in water usage, the mechanism involved in the process is still not clear. A better understanding of the relations between plant and water and the mechanisms of tolerance to WD can significantly improve pastures productivity and environmental quality. Despite the mechanisms that allow plants to adjust as a response to WD, depending on its severity and duration plants are not capable to survive the stress by themselves. For that reason, the use of technologies such as PGPB can make them more resistant to WD without jeopardizing their development and productivity. There are studies that show the positive effects of PGPB in grasses during WD. In this review, we are going to present an overview of the causes, effects and responses of the inoculation of PGPB in grasses exposed to water deficit.
References
Ali, S.k.Z., Sandhya, V., Grover, M., Kishore, N., Rao, L.V., Venkateswarlu, B. (2009). Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol. Fertil. Soils 46, 45-55. https://doi.org/10.1007/s00374-009-0404-9
Ali, S.k.Z., Sandhya, V., Grover, M., Rao, L.V., Venkateswarlu, B. (2011). Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. Journal of Plant Interactions. 6, 239-246. https://doi.org/10.1080/17429145.2010.545147
Almeida, A. C. S, Bonifácio, J., Pusch, M., Oliveira, F. C., Geseinhoff, L. O., Biscaro, G. A. (2017). Produtividade e eficiência de uso da água em milho cultivado com diferentes estratégias de manejo hídrico. Revista Brasileira de Agricultura Irrigada, 11, 1448-1457. doi: 10.7127/rbai.v11n300577
Anjum, S. A., Xie, X. Y., Wang, L. C., Saleem, M. F., Man, C., Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6, 2026-2032. doi: 10.5897/AJAR10.027
Arzanesh, M.H., Alikhani, H.A., Khavazi, K., Rahimian, H.A., Miransari, M. (2011). Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. Under drought stress. World J. Microbiol. Biotechnol. 27, 197-205. https://doi.org/10.1007/s11274-010-0444-1
Bonfim-Silva, E. M., da Silva, T. J. A., Cabral, C. E. A., Kroth, B. E., Rezende, D. (2011). Desenvolvimento inicial de gramíneas submetidas ao estresse hídrico. Revista Caatinga, 24, 180-186.
Borrell, A. K., Hammer, G. L., Douglas, A. C. L. (2000a). Does maintaining green leaf area in sorghum improve yield under drought? I. Leaf growth and senescence. Crop Science, 40, 1026-1037. https://doi.org/10.2135/cropsci2000.4041026x
Borrell, A. K., Hammer, G. L., Douglas, A. C. L. (2000b). Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. Crop Science, 40, 1037-1048. https://doi.org/10.2135/cropsci2000.4041037x
Cassan, F., Vanderleyden, J., Spaepen, S. (2014). Physiological and agronomical aspects of phytohormone production by model plant-growth promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. Journal of Plant Growth Regulation, 33, 440-459. https://doi.org/10.1007/s00344-013-9362-4
Cassán, F., Diaz-Zorita, M. (2016). Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biology and Biochemistry, 103, 117-130. https://doi.org/10.1016/j.soilbio.2016.08.020
Chang, W. S., Van De Mortel, M., Nielsen, L., De Guzman, G. N., Li, X., Halverson, L. J. (2007). Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. Journal of Bacteriology, 189, 8290-8299. doi: 10.1128/JB.00727-07
Chaves, M. M., Oliveira, M. M. (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of experimental botany 407, 2365–2379. https://doi.org/10.1093/jxb/erh269
Coelho, A. E., Tochetto, C., Turek, T. L., Michellon, L. H., Fioreze, S. L. (2017). Seed inoculation with Azospirillum brasilense in corn plants submitted to water limitation. Scientia Agraria Paranaensis, 16, 186-192. https://dx.doi.org/10.18188/1983-1471/sap.v16n1p186-192
Cohen, A. C., Travaglia, C. N., Bottini, R., Piccoli, P. N. (2009). Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany, 87, 455-462. https://doi.org/10.1139/B09-023
Creus, C.M., Sueldo, R.J., Barassi, C.A. (2004). Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Canadian Journal of Botany, 82,273–281. https://doi.org/10.1139/b03-119
Dar, Z. M., Rouf, A., Masood, A., Asif, M., Malik, M. A. (2018). Review on plant growth promoting rhizobacteria and its effect on plant growth. Journal of Pharmacognosy and Phytochemistry, 7, 2802-2804.
Davies, P. J. (2010). Plant hormones: Biosynthesis, signal transduction, action! Springer, Dordrecht.
Dimkpa, C., Weinand, T., Asch, F. (2009). Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell & Environment, 32, 1682-1694. https://doi.org/10.1111/j.1365-3040.2009.02028.x
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29, 185-212. https://doi.org/10.1007/978-90-481-2666-8_12
Figueiredo, M. V. B., Seldin, L., Araujo, F. F. (2010). Plant growth promoting rhizobacteria: fundamentals and applications. In ‘Plant growth and health promoting bacteria’. (Ed. DK Maheshwari) pp. 45–68. (Springer-Verlag: Dordrecht, The Netherlands)
Fukami, J., Ollero, F. J., Megías, M., Hungria, M. (2017). Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express, 7, 153. https://doi.org/10.1186/s13568-017-0453-7
Glick, B. R. (2005). Modulation of plant ethylene levels by the bacterial enzymeACC deaminase. FEMS Microbiology Letters, 251, 1–7. https://doi.org/10.1016/j.femsle.2005.07.030
Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological research, 169, 30-39. https://doi.org/10.1016/j.micres.2013.09.009
Guimarães, C. M., Stone, L. F., Oliveira, J. P. de, Rangel, P. H. N., Rodrigues, C. A. P. (2011). Sistema radicular do arroz de terras altas sob deficiência hídrica. Pesquisa Agropecuária Tropical, 41, 126-134.
Hadiarto, T., Tran, L. S. P. (2011). Progress studies of drought-responsive genes in rice. Plant Cell Reports, 30, 297-310. https://doi.org/10.1007/s00299-010-0956-z
Hungria, M., Nogueira, M. A., Araujo, R. S. (2016). Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: An environment-friendly component in the reclamation of degraded pastures in the tropics. Agriculture, Ecosystems & Environment, 221, 125-131. https://doi.org/10.1016/j.agee.2016.01.024
Hura, T., Hura, K., Grzesiak, M., Rzepka, A. (2007). Effect of long-term drought stress on leaf gas exchange and fluorescence parameters in C3 and C4 plants. Acta Physiologiae Plantarum, 29, 103-113. https://doi.org/10.1007/s11738-006-0013-2
Inman-Bamber, N. G. (2004). Sugarcane water stress criteria for irrigation and drying off. Field Crops Research, 89, 107-122. https://doi.org/10.1016/j.fcr.2004.01.018
Jabeen, F., Shahbaz, M., Ashraf, M. (2008). Discriminating some prospective cultivars of maize (Zea mays L.) for drought tolerance using gas exchange characteristics and proline contents as physiological markers. Pakistan Journal of Botany, 40, 2329-2343.
Kalaji, M. H., Łoboda, T. (2010). Chlorophyll fluorescence in the studies of the physiological condition of plants. SGGW, Warsaw, p 116.
Kasim, W. A., Osman, M. E., Omar, M. N., El-Daim, I. A. A., Bejai, S., Meijer, J. (2012). Control of drought stress in wheat using plant-growth-promoting bacteria. Journal of plant growth regulation, 32, 122-130. https://doi.org/10.1007/s00344-012-9283-7
Kaushal, M., Wani, S. P. (2016). Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Annals of Microbiology, 66, 35-42. https://doi.org/10.1007/s13213-015-1112-3
Kavamura, V. N., Santos, S. N., Silva, J. L., Parma, M. M., Ávila, L. A., Visconti, A., Zucchi, T. D., Taketani, R. G., Andreote, F. D., Melo, I. S. (2013a). Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiological Research, 168, 183-191. https://doi.org/10.1016/j.micres.2012.12.002
Kavamura, V. N., Taketani, R. G., Lançoni, M. D., Andreote, F. D., Mendes, R., De Melo, I. S. (2013b). Water regime influences bulk soil and rhizosphere of Cereus jamacaru bacterial communities in the Brazilian Caatinga biome. PLoS ONE, 9, 2013. doi: 10.1371/journal.pone.0073606
Khan, A. L., Waqas, M., Hussain, J., Al-Harrasi, A., Hamayun, M., Lee, I-J. (2015). Phytohormones enabled endophytic fungal symbiosis improve aluminum phytoextraction in tolerant Solanum lycopersicum: an examples of Penicillium janthinellum LK5 and comparison with exogenous GA3. J Hazard Mater, 295, 70-78. https://doi.org/10.1016/j.jhazmat.2015.04.008
Kumar, A., Verma, J. P. (2018). Does plant-microbe interaction confer stress tolerance in plants: a review? Microbiological Research, 207, 41-52. https://doi.org/10.1016/j.micres.2017.11.004
Leite, R. D. C., dos Santos, J. G., Silva, E. L., Alves, C. R., Hungria, M., Leite, R. D. C., dos Santos, A. C. (2018). Productivity increase, reduction of nitrogen fertiliser use and drought-stress mitigation by inoculation of Marandu grass (Urochloa brizantha) with Azospirillum brasilense. Crop and Pasture Science, 70, 61-67. https://doi.org/10.1071/CP18105
Lisar, S. Y. S., Motafakkerazad, R., Hossain, M. M., Rahman, I. M. M. Water stress in plants: causes, effects and responses. In: Rahman, I. M. M. editor. Water stress. InTech, University Campus STeP Ri, HRV (2012). p. 1-14.
Long, H. H., Schmidt, D. D., Baldwin, I. T. (2008). Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS ONE, 3, e2702. doi: 10.1371/journal.pone.0002702
Mamédio, D. (2020). Inoculação de bactérias promotoras do crescimento de plantas em Brachiaria brizantha cv. BRS paiaguás e Brachiaria ruziziensis em déficit hídrico. 96f. Tese (Doutorado em Zootecnia) - Universidade Estadual de Maringá, Maringá-PR.
Marques, A. C. R., de Oliveira, L. B., Nicoloso, F. T., Jacques, R. J. S., Giacomini, S. J., De Quadros, F. L. F. (2017). Biological nitrogen fixation in C4 grasses of different growth strategies of South America natural grasslands. Applied Soil Ecology, 113, 54-62. https://doi.org/10.1016/j.apsoil.2017.01.011
Martínez, C., Espinosa-Ruiz, A., Prat, S. (2016). Gibberellins and plant vegetative growth. Annual Plant Reviews, 49, 285-322. https://doi.org/10.1002/9781119312994.apr0539
Marulanda, A., Barea, J. M., Azcon, R. (2009). Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environment. mechanisms related to bacterial effectiveness. Journal of Plant Growth Regulation, 28, 115-124. https://doi.org/10.1007/s00344-009-9079-6
McNeil, S. D., Nuccio, M. L., Hanson, A. D. (1999). Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiology, 120, 945-949. doi: https://doi.org/10.1104/pp.120.4.945
Megías, E., Junior, F. B. R., Ribeiro, R. A., Ollero, F. J., Megías, M., Hungria, M. (2017). Genome Sequence of Pantoea ananatis Strain AMG 501, a Plant Growth-Promoting Bacterium Isolated from Rice Leaves Grown in Paddies of Southern Spain. Genome Announc., 5, e00848-17. doi: 10.1128/genomeA.00848-17
Nadeem, S., Zahir, M., Naveed, Z. A., Asghar, M., Arshad, H. N. (2010). Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Science Society of Americal Journal, 74, 533-542. https://doi.org/10.2136/sssaj2008.0240
Nelson, S. K., Steber, C. M. (2016). Gibberellin hormone signal perception: down-regulating DELLA repressors of plant growth and development. Annual Plant Reviews, 49, 153-188. https://doi.org/10.1002/9781119312994.apr0535
Nocker, A., Fernández, P. S., Montijn, R., Schuren, F. (2012). Effect of air drying on bacterial viability: a multiparameter viability assessment. Journal of Microbiological Methods, 90, 86-95. https://doi.org/10.1016/j.mimet.2012.04.015
Nogueira, R. J. M. C.; Moraes, J. A. P. V; Burity, H. A.; Bezerra Neto, E. (2001). Alterações na resistência à difusão de vapor das folhas e relação hídricas em aceroleiras submetidas a déficit de água. Brazilian Journal of Plant Physiology, 13, 755-87. https://doi.org/10.1590/S0103-31312001000100009
Odokonyero, K., Acuña, K., T. B., Cardoso, J. A., de La Cruz Jimenez, J., Rao, I. M. (2016). Fungal endophyte association with Brachiaria grasses and its influence on plant water status, total non-structural carbohydrates and biomass production under drought stress. Plant and Soil, 409, 273-282. https://doi.org/10.1007/s11104-016-2947-5
Odokonyero, K., Acuña, T. B., Cardoso, J. A., Jimenez, J. de la C., Madhusudana Rao, I. (2017). Effect of endophyte association with Brachiaria species on shoot and root morpho-physiological responses under drought stress. Journal of Plant Biochemistry & Physiology, 5, 1-10. http://dx.doi.org/10.4172/2329-9029.1000190
Oladosu, Y., Rafii, M. Y., Samuel, C., Fatai, A., Magaji, U., Kareem, I., Kamarudin, Z.S., Muhammad, I.I., Kolapo, K. (2019). Drought resistance in rice from conventional to molecular breeding: A Review. International journal of molecular sciences, 20(14), 3519. https://doi.org/10.3390/ijms20143519
Pereyra, M. A., Garcia, P., Colabelli, M.N., Barassi, C.A., Creus, C. M. (2012). A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Applied Soil Ecology, 53, 94-97. https://doi.org/10.1016/j.apsoil.2011.11.007
Pérez-Montaño, F., Alías-Villegas, C., Bellogín, R. A., Del Cerro, P., Espuny, M. R., Jiménez-Guerrero, I., López-Baena, F. J., Ollero, F. J., Cubo, T. (2014). Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiological research, 169, 325-336. https://doi.org/10.1016/j.micres.2013.09.011
Perlikowski, D., Augustyniak, A., Masajada, K., Skirycz, A., Soja, A.M., Michaelis, Ä., Wolter, G. and Kosmala, A. (2019). Structural and metabolic alterations in root systems under limited water conditions in forage grasses of Lolium-Festuca complex. Plant science, 283, 211-223. https://doi.org/10.1016/j.plantsci.2019.02.001
Prakash, V., Singh, V. P., Tripathi, D. K., Sharma, S., Corpas, F. J. (2019). Crosstalk between nitric oxide (NO) and abscisic acid (ABA) signalling molecules in higher plants. Environmental and experimental botany, 161, 41-49. https://doi.org/10.1016/j.envexpbot.2018.10.033
Qudsaia, B., Noshinil, Y., Asghari, B., Nadia, Z., Abida, A., Fayazul, H. (2013). Effect of Azospirillum inoculation on maize (Zea mays L.) under drought stress. Pak J Bot, 45, 13-20.
Rahdari, P., Hoseini, S. M. (2012). Drought stress, a review. International Journal of Agronomy and Plant Production, 3, 443-446.
Raheem, A., Shaposhnikov, A., Belimov, A. A., Dodd, I. C., Ali, B. (2017). Auxin production by rhizobacteria was associated with improved yield of wheat (Triticum aestivum L.) under drought stress. Archives of Agronomy and Soil Science, 64, 574-587. https://doi.org/10.1080/03650340.2017.1362105
Rodríguez-Salazar, J., Suárez, R., Caballero-Mellado, J., Iturriaga, G. (2009). Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiology Letters, 296, 52-59. https://doi.org/10.1111/j.1574-6968.2009.01614.x
Rolli, E., Marasco, R., Vigani, G., Ettoumi, B., Mapelli, F., Deangelis, M.L., et al. (2014). Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environmental Microbiology, 17, 316-331. https://doi.org/10.1111/1462-2920.12439
Rong-Hua, L. I., Pei-Pol, G. U. O., Baumz, M., Grando, S., Ceccarelli, S. (2006). Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agricultural Sciences in China, 5, 551-557.
Saleem, M., Arshad, M., Hussain, S., Bhatti, A. S. (2007). Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology & Biotechnology 34, 635-648. https://doi.org/10.1007/s10295-007-0240-6
Sanches, F. M., Da Cunha, F. F., Dos Santos, O. F., De Souza, E. J., Leal, A. J. F., De Faria Theodoro, G. (2015). Desempenho agronômico de cultivares de cevada cervejeira sob diferentes lâminas de irrigação. Semina:Ciencias Agrárias, 36, 89-102. doi: 10.5433/1679-0359.2015v36n1p89
Sandhya, V., Shrivastava, M., Ali, S. Z., Prasad, V. S. S. K. (2017). Endophytes from maize with plant growth promotion and biocontrol activity under drought stress. Russian Agricultural Sciences, 43, 22-34. https://doi.org/10.3103/S1068367417010165
Shakir, M. A., Asghari, B., Arshad, M. (2012). Rhizosphere bacteria containing ACCdeaminase conferred drought tolerance in wheat grown under semi-aridclimate. Soil Environ., 31, 108-112.
Shao, H.-B., Chu, L.-Y., Jaleel, C. A., & Zhao, C.-X. (2008). Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies, 331(3), 215–225. doi:10.1016/j.crvi.2008.01.002
Souza, M. S. T., Baura, V. A., Santos, S. A., Fernandes-Júnior, P. I., Reis, F. B. Junior., Marques, M. R., Paggi, G. M., Silva, B. M. (2017). Azospirillum spp. from native forage grasses in Brazilian Pantanal floodplain: biodiversity and plant growth promotion potential. World Journal of Microbiology & Biotechnology, 33, 81. https://doi.org/10.1007/s11274-017-2251-4
Souza, L. C., Siqueira, J. A. M., Silva, J. L. D. S., Coelho, C. C. R., Neves, M. G., Neto, C. F. D. O. (2013). Osmorreguladores em plantas de sorgo sob suspensão hídrica e diferentes níveis de silício. Revista Brasileira de Milho e Sorgo, 12, 240-249. https://doi.org/10.18512/1980-6477/rbms.v12n3p240-249
Spaepen, S. (2015). Plant hormones produced by microbes. In: Lugtenberg B. (eds) Principles of Plant-Microbe Interactions (pp. 247-256). Springer, Cham.
Staniak, M. and Kocoń, A. (2015). Forage grasses under drought stress in conditions of Poland. Acta Physiologiae Plantarum, 37, 116. https://doi.org/10.1007/s11738-015-1864-1
Streit, N. M., Canterle, L. P., Canto, M. W. D., Hecktheuer, L. H. H. (2005). The chlorophylls. Ciência Rural, 35, 748-755.
Taiz, L., Zeiger, E. 4 eds. Porto Alegre: Artmed, 2009, 848 p.
Ullah, A., Sun, H., Yang, X., Zhang, X. (2017). Drought coping strategies in cotton: increased crop per drop. Plant biotechnology journal, 15(3), 271-284. https://doi.org/10.1111/pbi.12688
Upadhyay, S. K., Singh, J. S., Singh, D. P. (2011). Exopolysaccharide producing plant growth promoting rhizobacteria under salinity condition. Pedosphere, 2, 214-222.
Urano, K., Kurihara, Y., Seki, M., Shinozaki, K. (2010). “Omics” analyses of regulatory networks in plant abiotic stress responses. Current Opinion in Plant Biology, 13, 132-138. https://doi.org/10.1016/j.pbi.2009.12.006
Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., Skz, A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13-24. https://doi.org/10.1016/j.micres.2015.12.003
Wei, H., Chen, C., Ma, X., Zhang, Y., Han, J., Mei, H., Yu, S. (2017). Comparative analysis of expression profiles of panicle development among tolerant and sensitive rice in response to drought stress. Frontiers in Plant Science, 8, 437. https://doi.org/10.3389/fpls.2017.00437
You Y-H et al. (2012). Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay. Journal of Microbiology and Biotechnology, 22, 1549-1556. https://doi.org/10.4014/jmb.1205.05010
Zafari, M., Ebadi, A., Godehkahriz, S. J. Effect of seed inoculation on alfalfa tolerance to water deficit stress. Notulae Botanicae Horti AgroBotanici Cluj-Napoca, v. 45, n. 1, p. 82-88, 2017. doi: https://doi.org/10.15835/nbha45110424
Zaidi, A., Ahmad, E., Khan, M. S., Saif, S., Rizvi, A. (2015). Role of plant growth promoting rhizobacteria in sustainable production of vegetables: current perspective. Sci Hortic, 193, 231-239. https://doi.org/10.1016/j.scienta.2015.07.020
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Divaney Mamédio, Renan Sanches, Sillas Mayron da Silva da Silva, Valdir Oliveira Rodrigues, João Vitor da Rosa Vicente, Artur Roque Domingues Barreiros, Ulysses Cecato
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.