Do plant-growth promoting bacteria contribute to greater persistence of tropical pastures in water deficit? - A review

Authors

DOI:

https://doi.org/10.33448/rsd-v9i8.5756

Keywords:

PGPB; Water deficit; Grass; Resistance to drought stress; Drought; Tolerance to stress.

Abstract

The use of plant-growth promoting bacteria (PGPB) in pastures is a sustainable alternative to increment forage production. Besides, it is an innovative technology that can mitigate the effects of water deficit (WD) in pastures. Currently, WD is one of the main abiotic stressor agents responsible for a negative impact on agricultural production. Permanent or temporary WD imposes limitations on the growth and development of forage plants more than any other environmental factors. Although there have been studies for many years to improve resistance to WD and efficiency in water usage, the mechanism involved in the process is still not clear. A better understanding of the relations between plant and water and the mechanisms of tolerance to WD can significantly improve pastures productivity and environmental quality. Despite the mechanisms that allow plants to adjust as a response to WD, depending on its severity and duration plants are not capable to survive the stress by themselves. For that reason, the use of technologies such as PGPB can make them more resistant to WD without jeopardizing their development and productivity. There are studies that show the positive effects of PGPB in grasses during WD. In this review, we are going to present an overview of the causes, effects and responses of the inoculation of PGPB in grasses exposed to water deficit.

References

Ali, S.k.Z., Sandhya, V., Grover, M., Kishore, N., Rao, L.V., Venkateswarlu, B. (2009). Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol. Fertil. Soils 46, 45-55. https://doi.org/10.1007/s00374-009-0404-9

Ali, S.k.Z., Sandhya, V., Grover, M., Rao, L.V., Venkateswarlu, B. (2011). Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. Journal of Plant Interactions. 6, 239-246. https://doi.org/10.1080/17429145.2010.545147

Almeida, A. C. S, Bonifácio, J., Pusch, M., Oliveira, F. C., Geseinhoff, L. O., Biscaro, G. A. (2017). Produtividade e eficiência de uso da água em milho cultivado com diferentes estratégias de manejo hídrico. Revista Brasileira de Agricultura Irrigada, 11, 1448-1457. doi: 10.7127/rbai.v11n300577

Anjum, S. A., Xie, X. Y., Wang, L. C., Saleem, M. F., Man, C., Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6, 2026-2032. doi: 10.5897/AJAR10.027

Arzanesh, M.H., Alikhani, H.A., Khavazi, K., Rahimian, H.A., Miransari, M. (2011). Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. Under drought stress. World J. Microbiol. Biotechnol. 27, 197-205. https://doi.org/10.1007/s11274-010-0444-1

Bonfim-Silva, E. M., da Silva, T. J. A., Cabral, C. E. A., Kroth, B. E., Rezende, D. (2011). Desenvolvimento inicial de gramíneas submetidas ao estresse hídrico. Revista Caatinga, 24, 180-186.

Borrell, A. K., Hammer, G. L., Douglas, A. C. L. (2000a). Does maintaining green leaf area in sorghum improve yield under drought? I. Leaf growth and senescence. Crop Science, 40, 1026-1037. https://doi.org/10.2135/cropsci2000.4041026x

Borrell, A. K., Hammer, G. L., Douglas, A. C. L. (2000b). Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. Crop Science, 40, 1037-1048. https://doi.org/10.2135/cropsci2000.4041037x

Cassan, F., Vanderleyden, J., Spaepen, S. (2014). Physiological and agronomical aspects of phytohormone production by model plant-growth promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. Journal of Plant Growth Regulation, 33, 440-459. https://doi.org/10.1007/s00344-013-9362-4

Cassán, F., Diaz-Zorita, M. (2016). Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biology and Biochemistry, 103, 117-130. https://doi.org/10.1016/j.soilbio.2016.08.020

Chang, W. S., Van De Mortel, M., Nielsen, L., De Guzman, G. N., Li, X., Halverson, L. J. (2007). Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. Journal of Bacteriology, 189, 8290-8299. doi: 10.1128/JB.00727-07

Chaves, M. M., Oliveira, M. M. (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of experimental botany 407, 2365–2379. https://doi.org/10.1093/jxb/erh269

Coelho, A. E., Tochetto, C., Turek, T. L., Michellon, L. H., Fioreze, S. L. (2017). Seed inoculation with Azospirillum brasilense in corn plants submitted to water limitation. Scientia Agraria Paranaensis, 16, 186-192. https://dx.doi.org/10.18188/1983-1471/sap.v16n1p186-192

Cohen, A. C., Travaglia, C. N., Bottini, R., Piccoli, P. N. (2009). Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany, 87, 455-462. https://doi.org/10.1139/B09-023

Creus, C.M., Sueldo, R.J., Barassi, C.A. (2004). Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Canadian Journal of Botany, 82,273–281. https://doi.org/10.1139/b03-119

Dar, Z. M., Rouf, A., Masood, A., Asif, M., Malik, M. A. (2018). Review on plant growth promoting rhizobacteria and its effect on plant growth. Journal of Pharmacognosy and Phytochemistry, 7, 2802-2804.

Davies, P. J. (2010). Plant hormones: Biosynthesis, signal transduction, action! Springer, Dordrecht.

Dimkpa, C., Weinand, T., Asch, F. (2009). Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell & Environment, 32, 1682-1694. https://doi.org/10.1111/j.1365-3040.2009.02028.x

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29, 185-212. https://doi.org/10.1007/978-90-481-2666-8_12

Figueiredo, M. V. B., Seldin, L., Araujo, F. F. (2010). Plant growth promoting rhizobacteria: fundamentals and applications. In ‘Plant growth and health promoting bacteria’. (Ed. DK Maheshwari) pp. 45–68. (Springer-Verlag: Dordrecht, The Netherlands)

Fukami, J., Ollero, F. J., Megías, M., Hungria, M. (2017). Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express, 7, 153. https://doi.org/10.1186/s13568-017-0453-7

Glick, B. R. (2005). Modulation of plant ethylene levels by the bacterial enzymeACC deaminase. FEMS Microbiology Letters, 251, 1–7. https://doi.org/10.1016/j.femsle.2005.07.030

Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological research, 169, 30-39. https://doi.org/10.1016/j.micres.2013.09.009

Guimarães, C. M., Stone, L. F., Oliveira, J. P. de, Rangel, P. H. N., Rodrigues, C. A. P. (2011). Sistema radicular do arroz de terras altas sob deficiência hídrica. Pesquisa Agropecuária Tropical, 41, 126-134.

Hadiarto, T., Tran, L. S. P. (2011). Progress studies of drought-responsive genes in rice. Plant Cell Reports, 30, 297-310. https://doi.org/10.1007/s00299-010-0956-z

Hungria, M., Nogueira, M. A., Araujo, R. S. (2016). Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: An environment-friendly component in the reclamation of degraded pastures in the tropics. Agriculture, Ecosystems & Environment, 221, 125-131. https://doi.org/10.1016/j.agee.2016.01.024

Hura, T., Hura, K., Grzesiak, M., Rzepka, A. (2007). Effect of long-term drought stress on leaf gas exchange and fluorescence parameters in C3 and C4 plants. Acta Physiologiae Plantarum, 29, 103-113. https://doi.org/10.1007/s11738-006-0013-2

Inman-Bamber, N. G. (2004). Sugarcane water stress criteria for irrigation and drying off. Field Crops Research, 89, 107-122. https://doi.org/10.1016/j.fcr.2004.01.018

Jabeen, F., Shahbaz, M., Ashraf, M. (2008). Discriminating some prospective cultivars of maize (Zea mays L.) for drought tolerance using gas exchange characteristics and proline contents as physiological markers. Pakistan Journal of Botany, 40, 2329-2343.

Kalaji, M. H., Łoboda, T. (2010). Chlorophyll fluorescence in the studies of the physiological condition of plants. SGGW, Warsaw, p 116.

Kasim, W. A., Osman, M. E., Omar, M. N., El-Daim, I. A. A., Bejai, S., Meijer, J. (2012). Control of drought stress in wheat using plant-growth-promoting bacteria. Journal of plant growth regulation, 32, 122-130. https://doi.org/10.1007/s00344-012-9283-7

Kaushal, M., Wani, S. P. (2016). Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Annals of Microbiology, 66, 35-42. https://doi.org/10.1007/s13213-015-1112-3

Kavamura, V. N., Santos, S. N., Silva, J. L., Parma, M. M., Ávila, L. A., Visconti, A., Zucchi, T. D., Taketani, R. G., Andreote, F. D., Melo, I. S. (2013a). Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiological Research, 168, 183-191. https://doi.org/10.1016/j.micres.2012.12.002

Kavamura, V. N., Taketani, R. G., Lançoni, M. D., Andreote, F. D., Mendes, R., De Melo, I. S. (2013b). Water regime influences bulk soil and rhizosphere of Cereus jamacaru bacterial communities in the Brazilian Caatinga biome. PLoS ONE, 9, 2013. doi: 10.1371/journal.pone.0073606

Khan, A. L., Waqas, M., Hussain, J., Al-Harrasi, A., Hamayun, M., Lee, I-J. (2015). Phytohormones enabled endophytic fungal symbiosis improve aluminum phytoextraction in tolerant Solanum lycopersicum: an examples of Penicillium janthinellum LK5 and comparison with exogenous GA3. J Hazard Mater, 295, 70-78. https://doi.org/10.1016/j.jhazmat.2015.04.008

Kumar, A., Verma, J. P. (2018). Does plant-microbe interaction confer stress tolerance in plants: a review? Microbiological Research, 207, 41-52. https://doi.org/10.1016/j.micres.2017.11.004

Leite, R. D. C., dos Santos, J. G., Silva, E. L., Alves, C. R., Hungria, M., Leite, R. D. C., dos Santos, A. C. (2018). Productivity increase, reduction of nitrogen fertiliser use and drought-stress mitigation by inoculation of Marandu grass (Urochloa brizantha) with Azospirillum brasilense. Crop and Pasture Science, 70, 61-67. https://doi.org/10.1071/CP18105

Lisar, S. Y. S., Motafakkerazad, R., Hossain, M. M., Rahman, I. M. M. Water stress in plants: causes, effects and responses. In: Rahman, I. M. M. editor. Water stress. InTech, University Campus STeP Ri, HRV (2012). p. 1-14.

Long, H. H., Schmidt, D. D., Baldwin, I. T. (2008). Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS ONE, 3, e2702. doi: 10.1371/journal.pone.0002702

Mamédio, D. (2020). Inoculação de bactérias promotoras do crescimento de plantas em Brachiaria brizantha cv. BRS paiaguás e Brachiaria ruziziensis em déficit hídrico. 96f. Tese (Doutorado em Zootecnia) - Universidade Estadual de Maringá, Maringá-PR.

Marques, A. C. R., de Oliveira, L. B., Nicoloso, F. T., Jacques, R. J. S., Giacomini, S. J., De Quadros, F. L. F. (2017). Biological nitrogen fixation in C4 grasses of different growth strategies of South America natural grasslands. Applied Soil Ecology, 113, 54-62. https://doi.org/10.1016/j.apsoil.2017.01.011

Martínez, C., Espinosa-Ruiz, A., Prat, S. (2016). Gibberellins and plant vegetative growth. Annual Plant Reviews, 49, 285-322. https://doi.org/10.1002/9781119312994.apr0539

Marulanda, A., Barea, J. M., Azcon, R. (2009). Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environment. mechanisms related to bacterial effectiveness. Journal of Plant Growth Regulation, 28, 115-124. https://doi.org/10.1007/s00344-009-9079-6

McNeil, S. D., Nuccio, M. L., Hanson, A. D. (1999). Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiology, 120, 945-949. doi: https://doi.org/10.1104/pp.120.4.945

Megías, E., Junior, F. B. R., Ribeiro, R. A., Ollero, F. J., Megías, M., Hungria, M. (2017). Genome Sequence of Pantoea ananatis Strain AMG 501, a Plant Growth-Promoting Bacterium Isolated from Rice Leaves Grown in Paddies of Southern Spain. Genome Announc., 5, e00848-17. doi: 10.1128/genomeA.00848-17

Nadeem, S., Zahir, M., Naveed, Z. A., Asghar, M., Arshad, H. N. (2010). Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Science Society of Americal Journal, 74, 533-542. https://doi.org/10.2136/sssaj2008.0240

Nelson, S. K., Steber, C. M. (2016). Gibberellin hormone signal perception: down-regulating DELLA repressors of plant growth and development. Annual Plant Reviews, 49, 153-188. https://doi.org/10.1002/9781119312994.apr0535

Nocker, A., Fernández, P. S., Montijn, R., Schuren, F. (2012). Effect of air drying on bacterial viability: a multiparameter viability assessment. Journal of Microbiological Methods, 90, 86-95. https://doi.org/10.1016/j.mimet.2012.04.015

Nogueira, R. J. M. C.; Moraes, J. A. P. V; Burity, H. A.; Bezerra Neto, E. (2001). Alterações na resistência à difusão de vapor das folhas e relação hídricas em aceroleiras submetidas a déficit de água. Brazilian Journal of Plant Physiology, 13, 755-87. https://doi.org/10.1590/S0103-31312001000100009

Odokonyero, K., Acuña, K., T. B., Cardoso, J. A., de La Cruz Jimenez, J., Rao, I. M. (2016). Fungal endophyte association with Brachiaria grasses and its influence on plant water status, total non-structural carbohydrates and biomass production under drought stress. Plant and Soil, 409, 273-282. https://doi.org/10.1007/s11104-016-2947-5

Odokonyero, K., Acuña, T. B., Cardoso, J. A., Jimenez, J. de la C., Madhusudana Rao, I. (2017). Effect of endophyte association with Brachiaria species on shoot and root morpho-physiological responses under drought stress. Journal of Plant Biochemistry & Physiology, 5, 1-10. http://dx.doi.org/10.4172/2329-9029.1000190

Oladosu, Y., Rafii, M. Y., Samuel, C., Fatai, A., Magaji, U., Kareem, I., Kamarudin, Z.S., Muhammad, I.I., Kolapo, K. (2019). Drought resistance in rice from conventional to molecular breeding: A Review. International journal of molecular sciences, 20(14), 3519. https://doi.org/10.3390/ijms20143519

Pereyra, M. A., Garcia, P., Colabelli, M.N., Barassi, C.A., Creus, C. M. (2012). A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Applied Soil Ecology, 53, 94-97. https://doi.org/10.1016/j.apsoil.2011.11.007

Pérez-Montaño, F., Alías-Villegas, C., Bellogín, R. A., Del Cerro, P., Espuny, M. R., Jiménez-Guerrero, I., López-Baena, F. J., Ollero, F. J., Cubo, T. (2014). Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiological research, 169, 325-336. https://doi.org/10.1016/j.micres.2013.09.011

Perlikowski, D., Augustyniak, A., Masajada, K., Skirycz, A., Soja, A.M., Michaelis, Ä., Wolter, G. and Kosmala, A. (2019). Structural and metabolic alterations in root systems under limited water conditions in forage grasses of Lolium-Festuca complex. Plant science, 283, 211-223. https://doi.org/10.1016/j.plantsci.2019.02.001

Prakash, V., Singh, V. P., Tripathi, D. K., Sharma, S., Corpas, F. J. (2019). Crosstalk between nitric oxide (NO) and abscisic acid (ABA) signalling molecules in higher plants. Environmental and experimental botany, 161, 41-49. https://doi.org/10.1016/j.envexpbot.2018.10.033

Qudsaia, B., Noshinil, Y., Asghari, B., Nadia, Z., Abida, A., Fayazul, H. (2013). Effect of Azospirillum inoculation on maize (Zea mays L.) under drought stress. Pak J Bot, 45, 13-20.

Rahdari, P., Hoseini, S. M. (2012). Drought stress, a review. International Journal of Agronomy and Plant Production, 3, 443-446.

Raheem, A., Shaposhnikov, A., Belimov, A. A., Dodd, I. C., Ali, B. (2017). Auxin production by rhizobacteria was associated with improved yield of wheat (Triticum aestivum L.) under drought stress. Archives of Agronomy and Soil Science, 64, 574-587. https://doi.org/10.1080/03650340.2017.1362105

Rodríguez-Salazar, J., Suárez, R., Caballero-Mellado, J., Iturriaga, G. (2009). Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiology Letters, 296, 52-59. https://doi.org/10.1111/j.1574-6968.2009.01614.x

Rolli, E., Marasco, R., Vigani, G., Ettoumi, B., Mapelli, F., Deangelis, M.L., et al. (2014). Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environmental Microbiology, 17, 316-331. https://doi.org/10.1111/1462-2920.12439

Rong-Hua, L. I., Pei-Pol, G. U. O., Baumz, M., Grando, S., Ceccarelli, S. (2006). Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agricultural Sciences in China, 5, 551-557.

Saleem, M., Arshad, M., Hussain, S., Bhatti, A. S. (2007). Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology & Biotechnology 34, 635-648. https://doi.org/10.1007/s10295-007-0240-6

Sanches, F. M., Da Cunha, F. F., Dos Santos, O. F., De Souza, E. J., Leal, A. J. F., De Faria Theodoro, G. (2015). Desempenho agronômico de cultivares de cevada cervejeira sob diferentes lâminas de irrigação. Semina:Ciencias Agrárias, 36, 89-102. doi: 10.5433/1679-0359.2015v36n1p89

Sandhya, V., Shrivastava, M., Ali, S. Z., Prasad, V. S. S. K. (2017). Endophytes from maize with plant growth promotion and biocontrol activity under drought stress. Russian Agricultural Sciences, 43, 22-34. https://doi.org/10.3103/S1068367417010165

Shakir, M. A., Asghari, B., Arshad, M. (2012). Rhizosphere bacteria containing ACCdeaminase conferred drought tolerance in wheat grown under semi-aridclimate. Soil Environ., 31, 108-112.

Shao, H.-B., Chu, L.-Y., Jaleel, C. A., & Zhao, C.-X. (2008). Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies, 331(3), 215–225. doi:10.1016/j.crvi.2008.01.002

Souza, M. S. T., Baura, V. A., Santos, S. A., Fernandes-Júnior, P. I., Reis, F. B. Junior., Marques, M. R., Paggi, G. M., Silva, B. M. (2017). Azospirillum spp. from native forage grasses in Brazilian Pantanal floodplain: biodiversity and plant growth promotion potential. World Journal of Microbiology & Biotechnology, 33, 81. https://doi.org/10.1007/s11274-017-2251-4

Souza, L. C., Siqueira, J. A. M., Silva, J. L. D. S., Coelho, C. C. R., Neves, M. G., Neto, C. F. D. O. (2013). Osmorreguladores em plantas de sorgo sob suspensão hídrica e diferentes níveis de silício. Revista Brasileira de Milho e Sorgo, 12, 240-249. https://doi.org/10.18512/1980-6477/rbms.v12n3p240-249

Spaepen, S. (2015). Plant hormones produced by microbes. In: Lugtenberg B. (eds) Principles of Plant-Microbe Interactions (pp. 247-256). Springer, Cham.

Staniak, M. and Kocoń, A. (2015). Forage grasses under drought stress in conditions of Poland. Acta Physiologiae Plantarum, 37, 116. https://doi.org/10.1007/s11738-015-1864-1

Streit, N. M., Canterle, L. P., Canto, M. W. D., Hecktheuer, L. H. H. (2005). The chlorophylls. Ciência Rural, 35, 748-755.

Taiz, L., Zeiger, E. 4 eds. Porto Alegre: Artmed, 2009, 848 p.

Ullah, A., Sun, H., Yang, X., Zhang, X. (2017). Drought coping strategies in cotton: increased crop per drop. Plant biotechnology journal, 15(3), 271-284. https://doi.org/10.1111/pbi.12688

Upadhyay, S. K., Singh, J. S., Singh, D. P. (2011). Exopolysaccharide producing plant growth promoting rhizobacteria under salinity condition. Pedosphere, 2, 214-222.

Urano, K., Kurihara, Y., Seki, M., Shinozaki, K. (2010). “Omics” analyses of regulatory networks in plant abiotic stress responses. Current Opinion in Plant Biology, 13, 132-138. https://doi.org/10.1016/j.pbi.2009.12.006

Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., Skz, A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13-24. https://doi.org/10.1016/j.micres.2015.12.003

Wei, H., Chen, C., Ma, X., Zhang, Y., Han, J., Mei, H., Yu, S. (2017). Comparative analysis of expression profiles of panicle development among tolerant and sensitive rice in response to drought stress. Frontiers in Plant Science, 8, 437. https://doi.org/10.3389/fpls.2017.00437

You Y-H et al. (2012). Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay. Journal of Microbiology and Biotechnology, 22, 1549-1556. https://doi.org/10.4014/jmb.1205.05010

Zafari, M., Ebadi, A., Godehkahriz, S. J. Effect of seed inoculation on alfalfa tolerance to water deficit stress. Notulae Botanicae Horti AgroBotanici Cluj-Napoca, v. 45, n. 1, p. 82-88, 2017. doi: https://doi.org/10.15835/nbha45110424

Zaidi, A., Ahmad, E., Khan, M. S., Saif, S., Rizvi, A. (2015). Role of plant growth promoting rhizobacteria in sustainable production of vegetables: current perspective. Sci Hortic, 193, 231-239. https://doi.org/10.1016/j.scienta.2015.07.020

Downloads

Published

15/07/2020

How to Cite

MAMÉDIO, D.; CECATO, U.; SANCHES, R.; SILVA, S. M. da S. da; SILVA, D. R. da; RODRIGUES, V. O.; GALBEIRO, S.; BARREIROS, A. R. D.; VICENTE, J. V. da R. Do plant-growth promoting bacteria contribute to greater persistence of tropical pastures in water deficit? - A review. Research, Society and Development, [S. l.], v. 9, n. 8, p. e523985756, 2020. DOI: 10.33448/rsd-v9i8.5756. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/5756. Acesso em: 12 nov. 2024.

Issue

Section

Agrarian and Biological Sciences