An application of Particle Swarm Optimization (PSO) algorithm with daily precipitation data in Campina Grande, Paraíba, Brazil

Authors

DOI:

https://doi.org/10.33448/rsd-v9i8.5841

Keywords:

PSO; Precipitation; Campina Grande.

Abstract

We study the daily precipitation in the municipality of Campina Grande, estimating the parameters of Gamma, Log-Normal, and Weibull distributions. To evaluate the parameter estimators, we compared the Particle Swarm Optimization (PSO) versus Maximum Likelihood Estimation (MLE) to analyze and understand the behaviour of the daily precipitation in Campina Grande. In most cases, our results show evidence that the PSO algorithm is an efficient and robust technique. Notwithstanding, the algorithm also presents an efficient parameter estimation due to its fast convergence.

References

Abbasi, B., Jahromi, A. H. E., Arkat, J., & Hosseinkouchack, M. (2006). Estimating the parameters of Weibull distribution using simulated annealing algorithm. Applied Mathematics and Computation, 183(1), 85-93.

Bardolle, F., Delay, F., Bichot, F., Porel, G., & Dörfliger, N. (2014). A Particle Swarm

Optimization for Parameter Estimation of a Rainfall-Runoff Model. In Mathematics of Planet

Earth (pp. 153-156). Springer, Berlin, Heidelberg.

Ben-Zvi, A. (2009). Rainfall intensity–duration–frequency relationships derived from large partial duration series. Journal of Hydrology, 367(1-2), 104-114.

Beskow, S., Caldeira, T. L., de Mello, C. R., Faria, L. C., & Guedes, H. A. S. (2015). Multiparameter probability distributions for heavy rainfall modeling in extreme southern Brazil. Journal of Hydrology: Regional Studies, 4, 123-133.

Carneiro, T. C., Melo, S. P., Carvalho, P. C., & Braga, A. P. D. S. (2016). Particle swarm optimization method for estimation of Weibull parameters: a case study for the Brazilian northeast region. Renewable energy, 86, 751-759.

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geoscientific model development, 7(3), 1247-1250.

Cho, H. K., Bowman, K. P., & North, G. R. (2004). A comparison of gamma and lognormal distributions for characterizing satellite rain rates from the tropical rainfall measuring mission. Journal of Applied meteorology, 43(11), 1586-1597.

Do Nascimento, K. K. F., dos Santos, F. S., da Silva Jale, J., & Ferreira, T. A. E. (2020a). Comparison of methods and distribution models for the modeling of wind speed data in the municipality of Petrolina, Northeast Brazil. Research, Society and Development, 9(7), 308974221.

Do Nascimento, K. K. F., dos Santos, F. S., da Silva Jale, J., & Ferreira, T. A. E. (2020b). Behavior of financial agents in an artificial market developed with the Particle Swarm Optimization algorithm. Research, Society and Development, 9(7), 285974216.

Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 39-43). Ieee.

Franco, C. S., Marques, R. F., Oliveira, A. S., & de Oliveira, L. F. (2014). Distribuição de probabilidades para precipitação máxima diária na Bacia Hidrográfica do Rio Verde, Minas Gerais. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(7), 735-741.

Fukuyama, Y. (2008). Fundamentals of particle swarm optimization techniques. Modern heuristic optimization techniques: theory and applications to power systems, 71-87.

Handoyo, S., Efendi, A., Jie, F., & Widodo, A. (2017). Implementation of particle swarm optimization (PSO) algorithm for estimating parameter of arma model via maximum likelihood method. Far East Journal of Mathematical Sciences, 102(7), 1337-1363.

Heo, J. H., Salas, J. D., & Boes, D. C. (2001). Regional flood frequency analysis based on a Weibull model: Part 2. Simulations and applications. Journal of hydrology, 242(3-4), 171-182.

Jakubcová, M., Máca, P., & Pech, P. (2015). Parameter estimation in rainfall-runoff

modelling using distributed versions of particle swarm optimization algorithm. Mathematical

Problems in Engineering, 2015.

Örkcü, H. H., Özsoy, V. S., Aksoy, E., & Dogan, M. I. (2015). Estimating the parameters of 3-p Weibull distribution using particle swarm optimization: A comprehensive experimental comparison. Applied Mathematics and Computation, 268, 201-226.

Papalexiou, S. M., Koutsoyiannis, D., & Makropoulos, C. (2013). How extreme is extreme? An assessment of daily rainfall distribution tails. Hydrology & Earth System Sciences, 17(1).

Pereira, A. S., Shitsuka, D. M., Pereira, F. J., & Shitsuka, R. (2018). Methodology of cientific research.[e-Book]. Santa Maria City. UAB/NTE/UFSM Editors. Accessed on: May, 9th, 2020. Available at: https://repositorio. ufsm. br/bitstream/handle/1/15824/Lic_Computacao_ Metodologia-Pesquisa-Cientifica. pdf.

Pereira, P. A., Cavalcante, J. I., Souza, W. M., & Galvíncio, J. D. (2016). Climate change and rainfall variability in the city of Campina Grande-PB: analysis from historical series of precipitation. Journal of Hyperspectral Remote Sensing, 6(3), 130-138.

Ren, C., An, N., Wang, J., Li, L., Hu, B., & Shang, D. (2014). Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting. Knowledge-based systems, 56, 226-239.

Sammut, C., & Webb, G. I. (Eds.). (2011). Encyclopedia of machine learning. Springer Science & Business Media.

Sugahara, S., Da Rocha, R. P., & Silveira, R. (2009). Non‐stationary frequency analysis of extreme daily rainfall in Sao Paulo, Brazil. International Journal of Climatology: A Journal of the Royal Meteorological Society, 29(9), 1339-1349.

Taormina, R., & Chau, K. W. (2015). Data-driven input variable selection for rainfall–runoff modeling using binary-coded particle swarm optimization and extreme learning

machines. Journal of hydrology, 529, 1617-1632.

Wilks, D. S. (1998). Multisite generalization of a daily stochastic precipitation generation model. journal of Hydrology, 210(1-4), 178-191.

Wong, G., Lambert, M. F., Leonard, M., & Metcalfe, A. V. (2010). Drought analysis using trivariate copulas conditional on climatic states. Journal of Hydrologic Engineering, 15(2), 129-141.

Yan, Z., Bate, S., Chandler, R. E., Isham, V., & Wheater, H. (2002). An analysis of daily maximum wind speed in northwestern Europe using generalized linear models. Journal of Climate, 15(15), 2073-2088.

Yaseen, Z. M., Ebtehaj, I., Kim, S., Sanikhani, H., Asadi, H., Ghareb, M. I., ... & Shahid, S. (2019). Novel hybrid data-intelligence model for forecasting monthly rainfall with uncertainty analysis. Water, 11(3), 502.

Downloads

Published

12/07/2020

How to Cite

XAVIER JÚNIOR, S. F. A.; XAVIER, Érika F. M.; JALE, J. da S.; OLIVEIRA, T. A. de; SABINO, A. L. C. An application of Particle Swarm Optimization (PSO) algorithm with daily precipitation data in Campina Grande, Paraíba, Brazil. Research, Society and Development, [S. l.], v. 9, n. 8, p. e444985841, 2020. DOI: 10.33448/rsd-v9i8.5841. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/5841. Acesso em: 22 nov. 2024.

Issue

Section

Exact and Earth Sciences