Edible coatings used for conservation of minimally processed vegetables: a review
DOI:
https://doi.org/10.33448/rsd-v9i8.6018Keywords:
Active packaging; Biopolymers; Shelf-life.Abstract
The minimally processed vegetable (MPV) market has been growing in recent decades. This growth is related to the change in lifestyle and eating habits of consumers who seek practical and healthy food for consumption. Maintaining the characteristics and quality of MPVs is a significant challenge for producers and traders. Minimal processing steps increase the perishability of these MPVs, thus increasing oxidative reactions and their metabolic rate. The research focused on the development of technologies that reduce these reactions gained prominence. Edible films and coatings produced from natural sources have emerged as alternative packaging for food applications and have received attention due to their advantages, such as their biodegradable and renewable nature, availability, and cost. The use of edible coatings for the preservation of vegetables in the postharvest condition, whether intact or minimally processed, has been identified as an emerging technology of great potential as they can control the internal atmosphere of MPVs. Biopolymers such as polysaccharides, lipids, and proteins have been evaluated in the formulation of these coatings. The choice of appropriate material will depend on the characteristics of the plant, the biopolymer, and the intended objectives of the film. This review aims to present some application examples, the main types of edible coatings, and the application techniques used in MPVs based on the literature, to assist a choice that can generate greater coating efficiency.
References
ABRAS - Associação Brasileira de Supermercados. (2017). O termômetro das perdas do setor. Retrieved March 20, 2019, from http://www.abrasnet.com.br/economia-e-pesquisa/perdas/pesquisa-2017/
Aksu, F., Uran, H., Altiner, D. Dü., & Altunatmaz, S. S. (2016). Effects of different packaging techniques on the microbiological and physicochemical properties of coated pumpkin slices. Food Science and Technology, 36(3), 549–554. https://doi.org/10.1590/1678-457x.00432
Alotaibi, S., & Tahergorabi, R. (2018). Development of a sweet potato starch-based coating and its effect on quality attributes of shrimp during refrigerated storage. LWT - Food Science and Technology, 88(October 2017), 203–209. https://doi.org/10.1016/j.lwt.2017.10.022
Amaral, D. P. do. (2014). Revestimento ativo antiescurecimento à base de proteína do soro de leite aplicado em maçãs minimamente processadas (Universidade Federal Rural do Rio de Janeiro). Retrieved from https://tede.ufrrj.br/jspui/handle/jspui/2857
Andrade, R. D., Skurtys, O., & Osorio, F. A. (2012). Atomizing Spray Systems for Application of Edible Coatings. Comprehensive Reviews in Food Science and Food Safety, 11(3), 323–337. https://doi.org/10.1111/j.1541-4337.2012.00186.x
Ansorena, M. R., Marcovich, N. E., & Roura, S. I. (2011). Impact of edible coatings and mild heat shocks on quality of minimally processed broccoli (Brassica oleracea L.) during refrigerated storage. Postharvest Biology and Technology, 59(1), 53–63. https://doi.org/10.1016/j.postharvbio.2010.08.011
Assis, O. B. G., & Britto, D. De. (2014). Review: edible protective coatings for fruits: fundamentals and applications. Brazilian Journal of Food Technology, 17(2), 87–97. https://doi.org/10.1590/bjft.2014.019
Azeredo, H. M. C. (2012). Advances in Fruit Processing Technologies. In S. Rodrigues & F. A. N. Fernandes (Eds.), Advances in Fruit Processing Technologies. https://doi.org/10.1201/b12088
Barriobero, J., López, R., Róth, E., Ozcoz, B., & Mir-Bel, J. (2018). Edible coatings with antioxidant properties for fresh-cut ‘Conference’ pear. Acta Horticulturae, (1209), 165–172. https://doi.org/10.17660/actahortic.2018.1209.24
Botelho, L. N. S., Rocha, D. A., Braga, M. A., Silva, A., & de Abreu, C. M. P. (2016). Quality of guava cv. ‘Pedro Sato’ treated with cassava starch and cinnamon essential oil. Scientia Horticulturae, 209, 214–220. https://doi.org/10.1016/j.scienta.2016.06.012
Botrel, D. A., Soares, N. de F. F., Camilloto, G. P., & Fernandes, R. V. de B. (2010). Revestimento ativo de amido na conservação pós-colheita de pera Williams minimamente processada. Ciência Rural, 40(8), 1814–1820. https://doi.org/10.1590/S0103-84782010000800023
Cazón, P., Velazquez, G., Ramírez, J. A., & Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids, 68, 136–148. https://doi.org/10.1016/j.foodhyd.2016.09.009
Chen, H., Sun, Z., & Yang, H. (2019). Effect of carnauba wax-based coating containing glycerol monolaurate on the quality maintenance and shelf-life of Indian jujube (Zizyphus mauritiana Lamk.) fruit during storage. Scientia Horticulturae, 244(September 2018), 157–164. https://doi.org/10.1016/j.scienta.2018.09.039
Chitarra, A. B., & Chitarra, M. I. F. (2005). Pós-colheita de frutas e hortaliças: fisiologia e manuseio (2nd ed.). Lavras: ESAL/FAEPE.
Coltelli, M.-B., Wild, F., Bugnicourt, E., Cinelli, P., Lindner, M., Schmid, M., … Lazzeri, A. (2016). State of the Art in the Development and Properties of Protein-Based Films and Coatings and Their Applicability to Cellulose Based Products: An Extensive Review. Coatings, 6(1), 1. https://doi.org/10.3390/coatings6010001
do Prado, I. N., Monteschio, J. de O., Matumoto-Pintro, P. T., Guerrero, A., Kempinski, E. M. B. C., Ribeiro, R. P., … Vital, A. C. P. (2018). Quality and sensory acceptability of fish fillet (Oreochromis niloticus) with alginate-based coating containing essential oils. Journal of Food Science and Technology, 55(12), 4945–4955. https://doi.org/10.1007/s13197-018-3429-y
Enujiugha, V. N., & Oyinloye, A. M. (2018). Protein-Lipid Interactions and the Formation of Edible Films and Coatings. In Encyclopedia of Food Chemistry. https://doi.org/10.1016/b978-0-08-100596-5.21477-7
Fagundes, C., Palou, L., Monteiro, A. R., & Pérez-Gago, M. B. (2015). Hydroxypropyl methylcellulose-beeswax edible coatings formulated with antifungal food additives to reduce alternaria black spot and maintain postharvest quality of cold-stored cherry tomatoes. Scientia Horticulturae, 193, 249–257. https://doi.org/10.1016/j.scienta.2015.07.027
Fai, A. E. C., Souza, M. R. A. de, Barros, S. T. de, Bruno, N. V., Ferreira, M. S. L., & Gonçalves, E. C. B. de A. (2016). Development and evaluation of biodegradable films and coatings obtained from fruit and vegetable residues applied to fresh-cut carrot (Daucus carota L.). Postharvest Biology and Technology, 112, 194–204. https://doi.org/10.1016/j.postharvbio.2015.09.021
Falcó, I., Randazzo, W., Sánchez, G., López-Rubio, A., & Fabra, M. J. (2019). On the use of carrageenan matrices for the development of antiviral edible coatings of interest in berries. Food Hydrocolloids, 92, 74–85. https://doi.org/10.1016/j.foodhyd.2019.01.039
Ferreira, M. S. L., Fai, A. E. C., Andrade, C. T., Picciani, P. H., Azero, E. G., & Gonçalves, É. C. B. A. (2016). Edible films and coatings based on biodegradable residues applied to acerolas (Malpighia punicifolia L.). Journal of the Science of Food and Agriculture, 96(5), 1634–1642. https://doi.org/10.1002/jsfa.7265
Forato, L. A., de Britto, D., de Rizzo, J. S., Gastaldi, T. A., & Assis, O. B. G. (2015). Effect of cashew gum-carboxymethylcellulose edible coatings in extending the shelf-life of fresh and cut guavas. Food Packaging and Shelf Life, 5, 68–74. https://doi.org/10.1016/j.fpsl.2015.06.001
Formiga, A. S., Pinsetta, J. S., Pereira, E. M., Cordeiro, I. N. F., & Mattiuz, B. H. (2019). Use of edible coatings based on hydroxypropyl methylcellulose and beeswax in the conservation of red guava ‘Pedro Sato.’ Food Chemistry, 290, 144–151. https://doi.org/10.1016/j.foodchem.2019.03.142
Gaikwad, K. K., Lee, S. M., Lee, J. S., & Lee, Y. S. (2017). Development of antimicrobial polyolefin films containing lauroyl arginate and their use in the packaging of strawberries. Journal of Food Measurement and Characterization, 11(4), 1706–1716. https://doi.org/10.1007/s11694-017-9551-0
Galus, S., & Kadzinka, J. (2015). Food applications of emulsion-based edible films and coatings. Trends in Foods Science & Technology, 45, 273–283. Retrieved from https://ac-els-cdn.ez30.periodicos.capes.gov.br/S0924224415001788/1-s2.0-S0924224415001788-main.pdf?_tid=06813f66-7818-48e2-a310-23919b20b2c3&acdnat=1553109817_256ba161d4554b9661311ef320af13c7
Geschwindner, G., & Drouven, H. (2009). Manufacturing processes: Chocolate panning and inclusions. In Science and Technology of Enrobed and Filled Chocolate, Confectionery and Bakery Products (pp. 397–413). https://doi.org/10.1533/9781845696436.3.397
Ghidelli, C., Sanchís, E., Rojas-Argudo, C., Pérez-Gago, M. B., & Mateos, M. (2018). Controlling enzymatic browning of fresh-cut eggplant by application of an edible coating and modified atmosphere packaging. Acta Horticulturae, 1209, 239–245. https://doi.org/10.17660/ActaHortic.2018.1209.34
Gomes, T. C., de Queiroz, A. G., Barbosa, L. F., Silva, L. E. P., Souza, B. B., & Sasaki, F. F. C. (2017). Uso de cobertura à base de fécula de mandioca na conservação da qualidade pós-colheita de mamões. 1. Retrieved from https://www.alice.cnptia.embrapa.br/bitstream/doc/1083801/1/QFRU07017V02Aprovado.pdf
González-Reza, R. M., Pérez-Olivier, M. S., Miranda-Linares, V., & Zambrano-Zaragoza, M. L. (2018). Effect of solid lipid nanoparticles coating on shelf life of refrigerated fresh-cut guava. Acta Horticulturae, 1194, 553–559. https://doi.org/10.17660/ActaHortic.2018.1194.80
Gunasekara, R. A. Y. S. A., Cornillie, P., Casteleyn, C., De Spiegelaere, W., Sorgeloos, P., Simoens, P., … Van den Broeck, W. (2011). Stereology and computer assisted three-dimensional reconstruction as tools to study probiotic effects of Aeromonas hydrophila on the digestive tract of germ-free Artemia franciscana nauplii. Journal of Applied Microbiology, 110(1), 98–105. https://doi.org/10.1111/j.1365-2672.2010.04862.x
Hager, J. V., Rawles, S. D., Xiong, Y. L., Newman, M. C., & Webster, C. D. (2019). Edible Corn-zein-based Coating Incorporated with Nisin or Lemongrass Essential Oil Inhibits Listeria monocytogenes on Cultured Hybrid Striped Bass, Morone chrysops × Morone saxatilis, Fillets During Refrigerated and Frozen Storage. Journal of the World Aquaculture Society, 50(1), 204–218. https://doi.org/10.1111/jwas.12523
Hamzah, H. M., Osman, A., Tan, C. P., & Mohamad Ghazali, F. (2013). Carrageenan as an alternative coating for papaya (Carica papaya L. cv. Eksotika). Postharvest Biology and Technology, 75, 142–146. https://doi.org/10.1016/j.postharvbio.2012.08.012
Han, J. H. (2014). Edible Films and Coatings. In Innovations in Food Packaging (Vol. 40, pp. 213–255). https://doi.org/10.1016/B978-0-12-394601-0.00009-6
Hardenburg, R. E. (1967). Wax and related coatings for horticultural products; a bibliography. https://doi.org/10.5962/bhl.title.67451
Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., & Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, 109, 1095–1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097
Hussein Ziedan, E. S., El Zahaby, H. M., Maswada, H. F., & El Rafh Zoeir, E. H. A. (2018). Agar-agar a promising edible coating agent for management of postharvest diseases and improving banana fruit quality. Journal of Plant Protection Research, 58(3). https://doi.org/10.24425/122938
Ishra, P. M., & Kalita, D. (2017). Assessment of pre-treatment of edible coatings prepared from gelatine and polyphenols (extracted under optimized conditions from amla fruit powder) on stability of banana chips. Acta Alimentaria, 46(2), 196–205. https://doi.org/10.1556/066.2017.46.2.9
Jia, C. G., Xu, C. J., Wei, J., Yuan, J., Yuan, G. F., Wang, B. L., & Wang, Q. M. (2009). Effect of modified atmosphere packaging on visual quality and glucosinolates of broccoli florets. Food Chemistry, 114(1), 28–37. https://doi.org/10.1016/j.foodchem.2008.09.009
Jiang, A., Zuo, J., Zheng, Q., Guo, L., Gao, L., Zhao, S., … Hu, W. (2019). Red LED irradiation maintains the postharvest quality of broccoli by elevating antioxidant enzyme activity and reducing the expression of senescence-related genes. Scientia Horticulturae, 251, 73–79. https://doi.org/10.1016/j.scienta.2019.03.016
Jiaoa, W., Chang, S., Xiangxin, L., Jiankang, C., Xinguang, F., & Weibo, J. (2019). Preparation of a chitosan-chlorogenic acid conjugate and its application as edible coating in postharvest preservation of peach fruit. Postharvest Biology and Technology, (154), 129–136.
Khodaei, D., & Hamidi-Esfahani, Z. (2019). Influence of bioactive edible coatings loaded with Lactobacillus plantarum on physicochemical properties of fresh strawberries. Postharvest Biology and Technology, 156. https://doi.org/10.1016/j.postharvbio.2019.110944
Lee, S. Y., Dangaran, K. L., & Krochta, J. M. (2002). Gloss stability of whey-protein/plasticizer coating formulations on chocolate surface. Journal of Food Science, 67(3), 1121–1125. https://doi.org/10.1111/j.1365-2621.2002.tb09463.x
Leite, B. S. F., Borges, C. D., Carvalho, P. G. B., & Botrel, N. (2015). Revestimento comestível à base de goma xantana, compostos lipofílicos e/ou cloreto de cálcio na conservação de morangos. Revista Brasileira de Fruticultura, 37(4), 1027–1036. https://doi.org/10.1590/0100-2945-228/14
Li, X., Du, X., Liu, Y., Tong, L., Wang, Q., & Li, J. (2019). Rhubarb extract incorporated into an alginate-based edible coating for peach preservation. Scientia Horticulturae, 257, 108685. https://doi.org/10.1016/j.scienta.2019.108685
Lugullo, M., & Salles, S. (2018). Cedes lança livro sobre perdas e desperdício de alimentos. Retrieved March 21, 2019, from Portal da Câmara dos Deputados website: https://www2.camara.leg.br/camaranoticias/institucional/materias/EDUCACAO/569745-CEDES-LANCA-NESTA-QUARTA-FEIRA-(12)-LIVRO-SOBRE-PERDAS-E-DESPERDICIO-DE-ALIMENTOS.html
Luvielmo, M., & Lamas, S. (2012). Revestimentos comestíveis em frutas. Estudos Tecnológicos Em Engenharia, 8(1), 8–15. https://doi.org/10.4013/ete.2012.81.02
Mali, S., Grossmann, M. V. E., García, M. A., Martino, M. N., & Zaritzky, N. E. (2005). Mechanical and thermal properties of yam starch films. Food Hydrocolloids, 19(1), 157–164. https://doi.org/10.1016/j.foodhyd.2004.05.002
Meindrawan, B., Suyatma, N. E., Wardana, A. A., & Pamela, V. Y. (2018). Nanocomposite coating based on carrageenan and ZnO nanoparticles to maintain the storage quality of mango. Food Packaging and Shelf Life, 18(October), 140–146. https://doi.org/10.1016/j.fpsl.2018.10.006
Miranda-Linares, V., Escamilla-Rendón, P., Del Real-López, A., González-Reza, R. M., & Zambrano-Zaragoza, M. L. (2018). Solid lipid nanoparticles based edible coating for saladette tomato preservation. Acta Horticulturae, 1194, 305–312. https://doi.org/10.17660/ActaHortic.2018.1194.44
Narsaiah, K., Wilson, R. A., Gokul, K., Mandge, H. M., Jha, S. N., Bhadwal, S., … Vij, S. (2015). Effect of bacteriocin-incorporated alginate coating on shelf-life of minimally processed papaya (Carica papaya L.). Postharvest Biology and Technology, 100, 212–218. https://doi.org/10.1016/j.postharvbio.2014.10.003
Nascimento, K. de O., Augusta, I. M., Rodrigues, N. da R., Pires, T., Batista, E., Júnior, J. L. B., & Barbosa, M. I. M. J. (2014). Alimentos minimamente processados: uma tendência de mercado. Acta Tecnológica, pp. 48–61.
Oregel-Zamudio, E., Angoa-Pérez, M. V., Oyoque-Salcedo, G., Aguilar-González, C. N., & Mena-Violante, H. G. (2017). Effect of candelilla wax edible coatings combined with biocontrol bacteria on strawberry quality during the shelf-life. Scientia Horticulturae, 214, 273–279. https://doi.org/10.1016/j.scienta.2016.11.038
Oriani, V. B., Molina, G., Chiumarelli, M., Pastore, G. M., & Hubinger, M. D. (2014). Properties of cassava starch-based edible coating containing essential oils. Journal of Food Science, 79(2), 189–194. https://doi.org/10.1111/1750-3841.12332
Ortiz-Duarte, G., Pérez-Cabrera, L. E., Artés-Hernández, F., & Martínez-Hernández, G. B. (2019). Ag-chitosan nanocomposites in edible coatings affect the quality of fresh-cut melon. Postharvest Biology and Technology, 147, 174–184. https://doi.org/10.1016/j.postharvbio.2018.09.021
Otero, V., Becerril, R., Santos, J. A., Rodríguez-Calleja, J. M., Nerín, C., & García-López, M. L. (2014). Evaluation of two antimicrobial packaging films against Escherichia coli O157: H7 strains invitro and during storage of a Spanish ripened sheep cheese (Zamorano). Food Control, 42, 296–302. https://doi.org/10.1016/j.foodcont.2014.02.022
Pavli, F., Tassou, C., Nychas, G. J. E., & Chorianopoulos, N. (2018). Probiotic incorporation in edible films and coatings: Bioactive solution for functional foods. International Journal of Molecular Sciences, 19(1). https://doi.org/10.3390/ijms19010150
Pereira, G. S., Machado, F. L. D. C., & Costa, J. M. C. (2016). Revista Brasileira de Engenharia Agrícola e Ambiental Quality of ‘ Valencia Delta ’ orange after degreening and coating with wax Qualidade de laranja ‘ Valência Delta ’ após desverdecimento e recobrimento com cera. 936–940.
Pereira, J. O., Soares, J., Monteiro, M. J. P., Gomes, A., & Pintado, M. (2018). Impact of whey protein coating incorporated with Bifidobacterium and Lactobacillus on sliced ham properties. Meat Science, 139(January), 125–133. https://doi.org/10.1016/j.meatsci.2018.01.016
Pinheiro, a C., Cerqueira, M. a, Souza, B. W. S., Martins, J. T., Teixeira, J. a, & Vicente, a a. (2010). Utilização de revestimentos/filmes edíveis para aplicações alimentares. Boletim Da Biotecnologia, Outubro, 18–29. Retrieved from http://repositorium.sdum.uminho.pt/bitstream/1822/16725/1/3559.pdf
Radi, M., Firouzi, E., Akhavan, H., & Amiri, S. (2017). Effect of gelatin-based edible coatings incorporated with Aloe vera and black and green tea extracts on the shelf life of fresh-cut oranges. Journal of Food Quality, 2017. https://doi.org/10.1155/2017/9764650
Rubilar, J. F., Zúñiga, R. N., Osorio, F., & Pedreschi, F. (2015). Physical properties of emulsion-based hydroxypropyl methylcellulose/whey protein isolate (HPMC/WPI) edible films. Carbohydrate Polymers, 123, 27–38. https://doi.org/10.1016/j.carbpol.2015.01.010
Sahraei Khosh Gardesh, A., Badii, F., Hashemi, M., Ardakani, A. Y., Maftoonazad, N., & Gorji, A. M. (2016). Effect of nanochitosan based coating on climacteric behavior and postharvest shelf-life extension of apple cv. Golab Kohanz. LWT - Food Science and Technology, 70, 33–40. https://doi.org/10.1016/j.lwt.2016.02.002
Saki, M., ValizadehKaji, B., Abbasifar, A., & Shahrjerdi, I. (2019). Effect of chitosan coating combined with thymol essential oil on physicochemical and qualitative properties of fresh fig (Ficus carica L.) fruit during cold storage. Journal of Food Measurement and Characterization, 0(0), 0. https://doi.org/10.1007/s11694-019-00030-w
Salvia-Trujillo, L., Rojas-Graü, M. A., Soliva-Fortuny, R., & Martín-Belloso, O. (2015). Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut fuji apples. Postharvest Biology and Technology, 105, 8–16. https://doi.org/10.1016/j.postharvbio.2015.03.009
Santos, E. C. M. (2012). Filmes biodegraveis de galactomanana: uso na conservação de frutos. Universidade Federal do Paraná.
Sapper, M., & Chiralt, A. (2018). Starch-Based Coatings for Preservation of Fruits and Vegetables. Coatings, 8(5), 152. https://doi.org/10.3390/coatings8050152
Sarantópoulos, C., & Cofcewicz, L. S. (2016). Embalagens Ativas para Produtos Perecíveis (No. 3). https://doi.org/21755000
Scartazzini, L., Tosati, J. V., Cortez, D. H. C., Rossi, M. J., Flôres, S. H., Hubinger, M. D., … Monteiro, A. R. (2019). Gelatin edible coatings with mint essential oil (Mentha arvensis): film characterization and antifungal properties. Journal of Food Science and Technology, 56(9), 4045–4056. https://doi.org/10.1007/s13197-019-03873-9
Schmid, M., & Müller, K. (2018). Whey Protein-Based Packaging Films and Coatings. In Whey Proteins. https://doi.org/10.1016/b978-0-12-812124-5.00012-6
Scopes, R. K. (1994). Protein purification : principles and practice (3rd ed.). New York: Springer-Verlag.
Shankar, S., & Rhim, J. W. (2016). Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films. Carbohydrate Polymers, 135, 18–26. https://doi.org/10.1016/j.carbpol.2015.08.082
Sharma, P., Shehin, V. P., Kaur, N., & Vyas, P. (2019). Application of edible coatings on fresh and minimally processed vegetables: a review. International Journal of Vegetable Science, Vol. 25, pp. 295–314. https://doi.org/10.1080/19315260.2018.1510863
Shigematsu, E., Dorta, C., Rodrigues, F. J., Cedran, M. F., Giannoni, J. A., Oshiiwa, M., & Mauro, M. A. (2018). Edible coating with probiotic as a quality factor for minimally processed carrots. Journal of Food Science and Technology, 55(9), 3712–3720. https://doi.org/10.1007/s13197-018-3301-0
Soares, N. D. F. F., da Silva, W. A., Pires, A. C. dos S., Camilloto, G. P., & Silva, P. S. (2009). Novos desenvolvimentos e aplicações em embalagens de alimentos. Ceres, 56(4), 370–378.
Sousa, H. A. de F., Filho, J. G. de O., Egea, M. B., Silva, E. R. da, Macagnan, D., Pires, M., & Peixoto, J. (2019). Active film incorporated with clove essential oil on storage of banana varieties. Nutrition & Food Science, 49(5), 911–924. https://doi.org/10.1108/nfs-09-2018-0262
Spagnol, W. A., Silveira Junior, V., Pereira, E., & Filho, N. G. (2018). Reducing losses in the fruit and vegetable chains by the analysis of shelf life dynamics. J. Food Technology, 21. https://doi.org/10.1590/1981-6723.07016
Talbot, G. (2009). Science and technology of enrobed and filled chocolate, confectionery and bakery products. CRC Press.
Tavassoli-Kafrani, E., Shekarchizadeh, H., & Masoudpour-Behabadi, M. (2016, February 10). Development of edible films and coatings from alginates and carrageenans. Carbohydrate Polymers, Vol. 137, pp. 360–374. https://doi.org/10.1016/j.carbpol.2015.10.074
Teixeira, B., Marques, A., Pires, C., Ramos, C., Batista, I., Saraiva, J. A., & Nunes, M. L. (2014). Characterization of fish protein films incorporated with essential oils of clove, garlic and origanum: Physical, antioxidant and antibacterial properties. LWT - Food Science and Technology, 59(1), 533–539. https://doi.org/10.1016/j.lwt.2014.04.024
Temiz, A., & Ayhan, D. K. (2017). Enzymes in Minimally Processed Fruits and Vegetables. In F. Yildiz & R. C. Wiley (Eds.), Food Engineering Series (2nd ed.). https://doi.org/10.1007/978-1-4939-7018-6_4
Tesfay, S. Z., Magwaza, L. S., Mditshwa, A., & Mbili, N. (2018). Carboxyl methylcellulose (CMC) incorporated with moringa leaf and seed extracts as new postharvest organic edible coating for avocado (Persea americana Mill.) fruit. Acta Horticulturae, 1201(Cmc), 161–168. https://doi.org/10.17660/ActaHortic.2018.1201.22
Tresseler, J. F. M., Figueiredo, E. A. T. de, Figueiredo, R. W. de, Machado, T. F., Delfino, C. M., & Sousa, P. H. M. de. (2009). Avaliação da qualidade microbiológica de hortaliças minimamente processadas. Ciência e Agrotecnologia, 33(spe), 1722–1727. https://doi.org/10.1590/s1413-70542009000700004
Trevisani, M., Cecchini, M., Siconolfi, D., Mancusi, R., & Rosmini, R. (2017). Effects of beeswax coating on the oxidative stability of long-ripened Italian salami. Journal of Food Quality, 2017. https://doi.org/10.1155/2017/8089135
Trujillo‐Agudelo, S., Osorio, A., Gómez, F., Contreras‐Calderón, J., Mesías‐Garcia, M., Delgado‐Andrade, C., … Vega‐Castro, O. (2019). Evaluation of the application of an edible coating and different frying temperatures on acrylamide and fat content in potato chips. Journal of Food Process Engineering. https://doi.org/10.1111/jfpe.13198
Turhan, K. N. (2010). Is Edible Coating an Alternative to MAP for Fresh and Minimally Processed Fruits? Acta Horticulturae, (876), 299–305. https://doi.org/10.17660/ActaHortic.2010.876.40
Vieira, A., Guerreiro, A., Antunes, M., Miguel, M., & Faleiro, M. (2019). Edible Coatings Enriched with Essential Oils on Apples Impair the Survival of Bacterial Pathogens through a Simulated Gastrointestinal System. Foods, 8(2), 57. https://doi.org/10.3390/foods8020057
Vital, A. C. P., Guerrero, A., Ornaghi, M. G., Kempinski, E. M. B. C., Sary, C., Monteschio, J. de O., … Prado, I. N. do. (2018). Quality and sensory acceptability of fish fillet (Oreochromis niloticus) with alginate-based coating containing essential oils. Journal of Food Science and Technology, 55(12), 4945–4955. https://doi.org/10.1007/s13197-018-3429-y
Xu, X. H., Jiang, Z. L., Feng, F. Q., & Lu, R. R. (2018). Mechanisms of Nα-lauroyl arginate ethyl ester against Penicillium digitatum and Pectobacterium carotovorum subsp. carotovorum. Journal of Food Science and Technology, 55(9), 3675–3682. https://doi.org/10.1007/s13197-018-3296-6
Yousuf, B., & Srivastava, A. K. (2019). Impact of honey treatments and soy protein isolate-based coating on fresh-cut pineapple during storage at 4 °C. Acta Horticulturae, 1209, 239–245. https://doi.org/10.1016/j.fpsl.2019.100361
Zhong, Y., Cavender, G., & Zhao, Y. (2014). Investigation of different coating application methods on the performance of edible coatings on Mozzarella cheese. LWT - Food Science and Technology, 56(1), 1–8. https://doi.org/10.1016/j.lwt.2013.11.006
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Maria Clara Guimarães, Joyce Fagundes Gomes Motta, Dayana Ketrin Silva Francisco Madella, Lívia de Aquino Garcia Moura, Carlos Eduardo de Souza Teodoro, Nathália Ramos de Melo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.