Caloric restriction and Spirulina platensis extract against ferrous ion (Fe2+) in the aging of Saccharomyces cerevisiae cells deleted to the SIR2 gene

Authors

DOI:

https://doi.org/10.33448/rsd-v9i8.6210

Keywords:

Antioxidants. Caloric restriction. Iron. SIR2. Sirtuins. Spirulina platensis.

Abstract

The aging process is aggravated by the presence of a high load of oxidative stress associated with the body's imbalance concerning certain metals, with emphasis on iron. Spirulina platensis extract (SP) and caloric restriction (CR) are nutritional interventions capable to mitigate the effects of aging-related diseases. The objective of this study was to determine the effects of SP and CR against ferrous ion on the aging of Saccharomyces cerevisiae deleted of SIR2 gene. Methods: Saccharomyces cerevisiae standard (WT) and sir2Δ strains, cultured in 2% or 0.5% (CR) glucose YPD media, whether exposed to 0.8 mg/mL SP and 1mM Fe2+. Cell viability and lipoperoxidation were analyzed. Results showed reduced cell survival and increased lipid peroxidation in the SIR2 gene deletion. Statistically significant results were found after aging for WT, SP, CR, SP + Fe2+, CR + Fe2+ treatments. The therapies CR and SP showed a protective effect against ferrous ion.

References

Abdel-Daim, M. M., Abuzead, S. M. M. & Halawa, S. M. (2013). Protective Role of Spirulina platensis against Acute Deltamethrin-Induced Toxicity in Rats. PLoS ONE, 8(9). doi:10.1371/journal.pone.0072991

Bermejo, P., Piñero, E. & Villar, A. M. (2008). Iron-chelating ability and antioxidant properties of phycocyanin isolated from a protean extract of Spirulina platensis. Food Chemistry, 110(2), 436-45. doi:10.1016/j.foodchem.2008.02.021

Bertolin, T. E., Macedo, D., Oro, T., Backes, L. T. H., Brás, I. C., Santos, C. N., Tenreiro, S. & Outeiro, T. F. (2017). Phycocyanin protects against Alpha-Synuclein toxicity in yeast. J. Funcional Foods, 38, Part A, 553-560. doi:10.1016/j.jff.2017.09.044

Burnett, C., Valentini, S., Cabreiro, F., Goss, M., Somogyvári, M., Piper, M. D., Hoddinott, M., Sutphin, G. L., Leko, V., McElwee, J. J., Vazquez-Manrique, R. P., Orfila, A. M., Ackerman, D., Au, C., Vinti, G., Riesen, M., Howard, K., Neri, C., Bedalov, A., Kaeberlein, M., Soti, C., Partridge, L. & Gems, D. (2011). Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature, 477 (7365): 482-5. doi:10.1038/nature10296.

da Costa, J., Vitorino, R., Silva, G., Vogel, C., Duarte, A. & Rocha-Santos, T. (2016). A synopsis on aging-Theories, mechanisms and future prospects. Ageing Res. Rev., 29, 90–112. doi:10.1016/j.arr.2016.06.005

Galal, M. K., Elleithy, E. M. M., Abdrabou, M. I., Yasin, N. A. E. & Shaleen, Y. M. (2019). Modulation of caspase-3 gene expression and protective effects of garlic and Spirulina against CNS neurotoxicity induced by lead exposure in male rats. Neurotoxicology, 72, 15–28. doi:10.1016/j.neuro.2019.01.006

Galaris, D., Barbouti, A. & Pantopoulos, K. (2019). Iron homeostasis and oxidative stress: An intimate relationship. Biochimica et Biophysica Acta (BBA). Mol. Cell Res., 1866, 12. doi:10.1016/j.bbamcr.2019.118535

Kaeberlein, M., McVey, M. & Guarente, L. (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13(19): 2570–2580. doi:10.1101/gad.13.19.2570

Kaeberlein, M., Hu, D., Kerr, E. O., Tsuchiya, M., Westman, E. A., Dang, N., Fields, S. & Kennedy, B. K. (2005). Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet, 1(5):e69. doi:10.1371/journal.pgen.0010069

Kang, W. K., Kim, Y. H., Kim, B. S. & Kim, J. Y. (2014). Growth phase-dependent roles of Sir2 in oxidative stress resistance and chronological lifespan in yeast. Journal of Microbiology, 52, 8, 652–8. doi:10.1007/s12275-014-4173-2

Libert, S. & Guarente, L. (2013). Metabolic and Neuropsychiatric Effects of Calorie Restriction and Sirtuins. Annu. Rev. Physiol., 75:669–84. doi:10.1146/annurev-physiol-030212-183800

Lu, Y., Tao, F., Zhou, M. & Tang, K. (2019). The signaling pathways that mediate the anti-cancer effects of caloric restriction. Pharmacol. Res., 141, 512–20. doi:10.1016/j.phrs.2019.01.021

McCay, C. M., Crowell, M. F., Maynard, L. A. (1935). The Effect of Retarded Growth Upon the Length of Life Span and Upon the Ultimate Body Size: One Figure. J. Nutr, 63. doi:10.1093/jn/10.1.63

Mannarino, S. C., Amorim, M. A., Pereira, M. D., Moradas-Ferreira, P., Panek, A. D., Costa, V. & Eleutherio, E. C. A. (2008). Glutathione is necessary to ensure benefits of calorie restriction during ageing in Saccharomyces cerevisiae. Mech. Ageing Dev., 129, 700–5. doi:10.1016/j.mad.2008.09.001

Marques, V. B., Leal, M. A. S., Mageski, J. G. A., Fidelis, H. G., Nogueira, B. V., Vasquez, E. C., Meyrelles, S. S., Simões, M. R. & Santos, L. (2019). Chronic iron overload intensifies atherosclerosis in apolipoprotein E deficient mice: Role of oxidative stress and endothelial dysfunction. Life Sci., 233, 116702. doi:10.1016/j.lfs.2019.116702

Matsuo, R., Mizobuchi, S., Nakashima, M., Miki, M., Ayusawa, D. & Fujii, M. (2017). Central roles of iron in the regulation of oxidative stress in the yeast Saccharomyces cerevisiae. Curr. Genet., 63, 5, 895-907. doi:10.1007/s00294-017-0689-4

Miranda, M. S., Cintra, R. G., Barros, S. B. M. & Mancini-Filho, J. (1998). Antioxidant activity of the microalga Spirulina maxima. Braz. J. Med. Biol. Res., 31, 1075, doi:10.1590/S0100-879X1998000800007

Nakamura, T., Naguro, I. & Ichijo, H. (2019). Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochimica et Biophysica Acta (BBA). Gen. Subj., 1863, 9, 1398-1409. doi:10.1016/j.bbagen.2019.06.010

Ondracek, C. R., Frappier, V., Ringel, A. E., Wolberger, C. & Guarente, L. (2017). Mutations that Allow SIR2 Orthologs to Function in a NAD+-Depleted Environment. Report, 18, 10, 2310-19. doi:10.1016/j.celrep.2017.02.031

Orlandi, I., Coppola, D. P., Strippoli, M., Ronzulli, R., Vai, M. (2017). Nicotinamide supplementation phenocopies SIR2 inactivation by modulating carbon metabolism and respiration during yeast chronological aging. Mech. Ageing Dev., 161, Part B, 277-87. doi:10.1016/j.mad.2016.06.006

Orlandi, I., Stamerra, G., Strippoli, M. & Vai, M. (2017). During yeast chronological aging resveratrol supplementation results in a short-lived phenotype Sir2-dependent. Redox Biol., 12, 745–54. doi:10.1016/j.redox.2017.04.015

Pallavi, R., Giorgio, M. & Pelicci, P.G. (2012). Insights into the beneficial effect of caloric/ dietary restriction for a healthy and prolonged life. Front. Physiol., 23, 3, 318-21. doi:10.3389/fphys.2012.00318

Pascual-Geler, M., Robles-Fernandez, I., Monteagudo, C., Lopez-Guarnido, O., Rodrigo, L., Gálvez-Ontiveros, Y., Cozar, J. M., Rivas, A. & Alvarez-Cubero, M. J. (2019). Impact of oxidative stress SNPs and dietary antioxidant quality score on prostate cancer. Int J Food Sci Nutr. 71(4):500-508. doi:10.1080/09637486.2019.1680958

Pereira, A.S., Shitsuka, D.M., Parreira, F.J., Shitsuka, R. Methodology of cientific research. [e-Book]. Santa Maria City. UAB / NTE / UFSM Editors. Available at: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Pifferi, F. & Aujard, F. (2019). Caloric restriction, longevity and aging: Recent contributions from human and non-human primate studies. Prog. Neuropsychopharmacol. & Biol. Psychiatr., 95, 109702. doi:10.1016/j.pnpbp.2019.109702

Rusu, M. E., Simedrea, R., Gheldiuc, A. M., Mocan, A., Vlase, L., Popa, D. S. & Ferreira, I. C. F. R. F. (2019). Benefits of tree nut consumption on aging and age-related diseases: Mechanisms of actions. Trends Food Sci. & Technol., 88, 104-20. doi:10.1016/j.tifs.2019.03.006

Sharma, P. K., Agrawal, V. & Roy, N. (2011). Mitochondria-mediated hormetic response in life span extension of calorie-restricted Saccharomyces cerevisiae. Age (Dordr.), 33, 2, 143-154. doi:10.1007/s11357-010-9169-1

Silva, L. B. A. R., Pinheiro-Castro, N., Novaes, G. M., Pascoal, G. F. L. & Ong, T. P. (2019). Bioactive food compounds, epigenetics and chronic disease prevention: Focus on early-life interventions with polyphenols. Food Res. International, 125, 108646. doi:10.1016/j.foodres.2019.108646

Steels, E. L., Learmonth, R. P. & Watson, K. (1994). Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology, 140 (Pt 3), 569–76. doi:10.1099/00221287-140-3-569

Wojtunik-Kulesza, K., Oniszczuk, A. & Waksmundzka-Hajnos, M. (2019). An attempt to elucidate the role of iron and zinc ions in development of Alzheimer’s and Parkinson’s diseases. Biomed. & Pharmacother., 111, 1277-89. doi:10.1016/j.biopha.2018.12.140

Wu, Q., Liu, L., Miron, A., Klímová, B., Wan, D. & Kuča, K. (2016). The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch. Toxicol. doi:10.1007/s00204-016-1744-5

Yu, P., Li, J. & Cen, P. (2002). Cloning and sequencing of the phycocyanin gene from Spirulina maxima and its evolutionary analysis. J. Applied Phycol., 14, 4, 307–10. doi:10.1023/A:1021177414835

Published

24/07/2020

How to Cite

BENETTI, F.; DIAS, T. A.; COSTA, J. A. V.; BERTOLIN, T. E. Caloric restriction and Spirulina platensis extract against ferrous ion (Fe2+) in the aging of Saccharomyces cerevisiae cells deleted to the SIR2 gene. Research, Society and Development, [S. l.], v. 9, n. 8, p. e662986210, 2020. DOI: 10.33448/rsd-v9i8.6210. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/6210. Acesso em: 25 nov. 2024.

Issue

Section

Agrarian and Biological Sciences