Evaluation of chemical composition and inhibition potential of fusel oil against different microorganisms
DOI:
https://doi.org/10.33448/rsd-v9i8.6250Keywords:
Industrial process; Higher alcohols; Metabolism; AntisepticAbstract
The control of contamination in the fermentation process is essential to ensure productivity. To minimize the load of contaminants, acid treatment and the addition of antibiotics are carried out. However, in the ethanol production process itself, other alcohols are formed that result in a mixture known as fusel oil that can be used to minimize contamination. Thus, this study aims to analyze fusel oil samples, characterize and evaluate the inhibition potential of this substance against different microorganisms. Initially, a bibliographic survey was carried out to identify the biomass and understand the stages of formation of fusel oil. Concomitantly, samples of fusel oil were analyzed with respect to physical-chemical parameters and chemical composition. The inhibition potential of fusel oil was evaluated with the inhibition halo test using the yeasts Catanduva-1 (Cat-1) and FT-858 and the bacteria Salmonella tiffi (ATCC 14028), Escherichia coli (ATCC 25922), Stafilicoccus aureus (ATCC 25923) and Bacillus sp. The production of fusel oil is directly related to yeast metabolism. The samples showed differences in physical-chemical parameters and both had a high content of isoamyl alcohol. The bacteria showed sensitivity to fusel oil demonstrating that this by-product can be used as an antiseptic and antibacterial agent.
References
Awad, O. I., Mamat, R. B., Ali, O. M., & Yusri, I. M. (2016). Effect of fuel oil-gasoline fusel blends on the performance and emission characteristics of spark ignition engine: a review. Journal of Scienctific Research & Development, 3(5), 31-36.
Bansode, S. R., & Rathod, V. K. (2014). Ultrasound assisted lipase catalysed synthesis of isoamyl butyrate. Process Biochemistry, 49(8), 1297-1303.
Bergmann, J. C., Trichez, D., Sallet, L. P., e Silva, F. C. D. P., & Almeida, J. R. (2018). Technological advancements in 1G ethanol production and recovery of by-products based on the biorefinery concept. In Advances in sugarcane biorefinery,73-95. Elsevier.
Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2015). Molecular mechanisms of antibiotic resistance. Nature reviews microbiology, 13(1), 42-51.
Borneman, A. R. & Pretorius, I. S. (2015). Genomic Insights into the Saccharomyces sensu stricto Complex. Genetics, 199(2):281–291.
Calam, A., Solmaz, H., Uyumaz, A., Polat, S., Yilmaz, E., & Içingür, Y. (2015). Investigation of usability of the fusel oil in a single cylinder spark ignition engine. Journal of the energy institute, 88(3), 258-265.
Carvalho-Netto, O. V., Carazzolle, M. F., Mofatto, L. S., Teixeira, P. J., Noronha, M. F., Calderón, L. A., ... & Pereira, G. A. (2015). Saccharomyces cerevisiae transcriptional reprograming due to bacterial contamination during industrial scale bioethanol production. Microbial cell factories, 14(1), 13.
Chaves, M. C. D. C., & Gomes, C. F. S. (2014). Avaliação de biocombustíveis utilizando o apoio multicritério à decisão. Production, 24(3), 495-507.
Cordente, A. G., Curtin, C. D., Varela, C., & Pretorius, I. S. (2012). Flavour-active wine yeasts. Applied Microbiology and Biotechnology, 96(3), 601-618.
de Carvalho, A. L., Antunes, C. H., & Freire, F. (2016). Economic-energy-environment analysis of prospective sugarcane bioethanol production in Brazil. Applied energy, 181, 514-526.
de Silva, A. P., Silvello, G. C., Bortoletto, A. M., & Alcarde, A. R. (2020). Composição química de aguardente de cana obtida por diferentes métodos de destilação. Brazilian Journal of Food Technology, 23, 1-10.
Dzialo, M. C., Park, R., Steensels, J., Lievens, B., & Verstrepen, K. J. (2017). Physiology, ecology and industrial applications of aroma formation in yeast. FEMS microbiology reviews, 41(Supp_1), S95-S128.
Ferreira, M. C. (2012). Estudo do processo de destilação de óleo fúsel.
Ferreira, M. C., Meirelles, A. J., & Batista, E. A. (2013). Study of the fusel oil distillation process. Industrial & engineering chemistry Research, 52(6), 2336-2351.
Freitas, M. D., & Romano, F. P. (2013). Tipos de contaminações bacterianas presentes no processo de fermentação alcoólica. Bioenergia em Revista: Diálogos, 3(2), 29-37.
Gamero, A., Belloch, C., & Querol, A. (2015). Genomic and transcriptomic analysis of aroma synthesis in two hybrids between Saccharomycescerevisiae and S. kudriavzevii in winemaking conditions. Microbial cell factories, 14(1), 128.
Hughes, G., & Webber, M. A. (2017). Novel approaches to the treatment of bacterial biofilm infections. British journal of pharmacology, 174(14), 2237-2246.
Magnani, G. S., Didonet, C. M., Cruz, L. M., Picheth, C. F., Pedrosa, F. O., & Souza, E. M. (2010). Diversity of endophytic bacteria in Brazilian sugarcane. Genet Mol Res, 9(1), 250-258.
Masi, M., Réfregiers, M., Pos, K. M., & Pagès, J. M. (2017). Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Nature microbiology, 2(3), 1-7.
McGinty, D., Letizia, C. S., & Api, A. M. (2010). Fragrance material review on phytol. Food and Chemical Toxicology, 48, S59-S63.
Moreira, R. F., Netto, C. C., & de Maria, C. A. (2012). A fração volátil das aguardentes de cana produzidas no Brasil. Química Nova, 35(9), 1819-1826.
Mouret, J. R., Camarasa, C., Angenieux, M., Aguera, E., Perez, M., Farines, V., & Sablayrolles, J. M. (2014). Kinetic analysis and gas–liquid balances of the production of fermentative aromas during winemaking fermentations: effect of assimilable nitrogen and temperature. Food research international, 62, 1-10.
Naves, R. F., Fernandes, F. D. S., Pinto, O. G., & Naves, P. L. F. (2010). Contaminação microbiana nas etapas do processamento e sua influência no rendimento fermentativo em usinas alcooleiras. Enciclopédia Biosfera, 6(11), 1-16.
Nedović, V., Gibson, B., Mantzouridou, T., Bugarski, B., Djordjević, V., Kalušević, A., Paraskevopoulou A., Sandell M., Šmogrovičová D. & Yilmaztekin, M. (2015). Aroma formation by immobilized yeast cells in fermentation processes. Yeast, 32(1), 173-216.
Nozzi, N. E., Desai, S. H., Case, A. E., & Atsumi, S. (2014). Metabolic engineering for higher alcohol production. Metabolic engineering, 25, 174-182.
Pereira, L. G., Dias, M. O. S., Junqueira, T. L., Chagas, M. F., Cavalett, O., Maciel Filho, R., & Bonomi, A. (2014). Production of butanol and other high valued chemicals using ethanol as feedstock integrated to a first and second generation sugarcane distillery. Chem. Eng. Trans, 37, 805-810.
Pillai, J. S., Danesh, N., Puttaiah, E. T., & Girish, K. (2011). Microbial diversity in solid waste molasses of Sugar Industry, Aranthangi, Tamilnadu. International Journal of Environmental Sciences, 2(2), 723-730.
Randall, C. P., Mariner, K. R., Chopra, I., & O'Neill, A. J. (2013). The target of daptomycin is absent from Escherichia coli and other gram-negative pathogens. Antimicrobial agents and chemotherapy, 57(1), 637-639.
Redgrave, L. S., Sutton, S. B., Webber, M. A., & Piddock, L. J. (2014). Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends in microbiology, 22(8), 438-445.
Santos, M. D. S. M., Cardoso, C. A. L., & Batistote, M. (2019). Avaliação da ação da luz ultravioleta na linhagem de levedura industrial Ragi Instam utilizada na produção de etanol/Evaluation of the action of ultraviolet light on Ragi Instam industrial yeast strain used in ethanol production. Brazilian Journal of Development, 5(9), 14074-14081.
Santos, M. D. S. M., de Castro, T. L. A., Batistote, M., & Cardoso, C. A. L. (2020). Caracterização do óleo fúsel das usinas da Região da Grande Dourados. In: apresentado em VII Simpósio de Bioquímica e Biotecnologia.
Şimşek, S., Özdalyan, B., & Saygın, H. (2019). Improvement of the Properties of Sugar Factory Fusel Oil Waste and Investigation of its Effect on the Performance and Emissions of Spark Ignition Engine. BioResources, 14(1), 440-452.
Stribny, J., Gamero, A., Pérez-Torrado, R., & Querol, A. (2015). Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors. International journal of food microbiology, 205, 41-46.
Styger, G., Prior, B., & Bauer, F. F. (2011). Wine flavor and aroma. Journal of industrial microbiology & biotechnology, 38(9), 1145.
Zhao, W. H., & Hu, Z. Q. (2013). Epidemiology and genetics of CTX-M extended-spectrum β-lactamases in Gram-negative bacteria. Critical reviews in microbiology, 39(1), 79-101.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Maria do Socorro Mascarenhas Santos, Thiago Luis Aguayo de Castro, Margareth Batistote, Claudia Andrea Lima Cardoso
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.