Analysis of satellite time series of hot pixels in brazilian biomes using the Horizontal Visibility Graph

Authors

DOI:

https://doi.org/10.33448/rsd-v9i9.6276

Keywords:

Vegetation fires; Biomes; Complex networks; Horizontal visibility graph.

Abstract

Vegetation fires are complex processes that can have natural causes or be result of human activities. The effect of fire on an ecosystem varies according to its sensitivity, but the recurrence of fires can affect the environmental equilibrium and human health. Seeking to reduce the negative effects of fires, it is necessary to monitor their occurrence and understand their dynamics. In Brazil monitoring is carried out via satellites, which detect hot pixels.  This process is performed by National Institute for Space Research (INPE), that provides data used in this work.  In order to study the temporal variability of fires in the Amazon, Cerrado, Caatinga and Atlantic Forest biomes, this work uses the Horizontal Visibility Graph method that generates a complex network for each biome and, using topological measures, evaluates whether the series of hot pixels represent stochastic or chaotic process. The measures used are the Coefficient λ of the degree distribution, the Clustering Coefficient and the Average Path Length. The results showed that the topological properties of networks varied according to the number of hot pixels and the number of pixels per unit of area of biome. The fire dynamics presented the correlated stochastic process for Amazon, Cerrado and Atlantic Forest biomes and the chaotic process for the Caatinga biome.

Author Biography

Joelma Mayara da Silva, Universidade Federal Rural de Pernambuco

Bacharel em Estatística (UFPE), Mestre em Biometria e Estatística Aplicada (UFRPE) e Doutoranda em Biometria e Estatística Aplicada. Atua nos seguintes temas: Física Estatística, Estudo de séries temporais através de redes complexas, Horizontal Visibility Graph, problema de partição equilibrada, problema de k-partição, metaheurísticas e modelagem estatística.

References

Aragão, L. E., Anderson, L. O., Fonseca, M. G., Rosan, T. M., Vedovato, L. B., Wagner, F. H., & Barlow, J. (2018). 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature communications, 9(1), 1-12.

Benicio, R. B., Stošić, T., de Figueirêdo, P. H., & Stošić, B. D. (2013). Multifractal behavior of wild-land and forest fire time series in Brazil. Physica A: Statistical Mechanics and its Applications, 392(24), 6367-6374.

Castro, F. R., Bastos, D. M. R. F., Luana, M. M. S., & NUNES, J. (2016). Impactos das queimadas sobre a saúde da população humana na Amazônia Maranhense. Revista de Pesquisa em Saúde, 17(3), 141-146.

Costa, Y. T., & Rodrigues, S. C. (2015). Efeito do fogo sobre vegetação e solo a partir de estudo experimental em ambiente de cerrado. Revista do Departamento de Geografia, 30, 149-165.

Copertino, M., Piedade, M. T. F., Vieira, I. C. G., & Bustamante, M. (2019). Desmatamento, fogo e clima estão intimamente conectados na Amazônia. Ciência e Cultura, 71(4), 04-05.

Gomes, L., Miranda, H. S., Silvério, D. V., & Bustamante, M. M. (2020). Effects and behaviour of experimental fires in grasslands, savannas, and forests of the Brazilian Cerrado. Forest Ecology and Management, 458, 117804.

Instituto Brasileiro de Geografia e Estatística, IBGE (2019). Brasil em Síntese - Território. Acesso em: novembro/2019, em https://brasilemsintese.ibge.gov.br/territorio.html.

INPE. Instituto Nacional de Pesquisas Espaciais, INPE (2019). Banco de Dados de Queimadas. Acesso em: setembro/2019, emhttp://www3.inpe.br/queimadas/bdqueimadas/.

Lacasa, L., Luque, B., Ballesteros, F., Luque, J., & Nuno, J. C. (2008). From time series to complex networks: The visibility graph. Proceedings of the National Academy of Sciences, 105(13), 4972-4975.

Lacasa, L., & Toral, R. (2010). Description of stochastic and chaotic series using visibility graphs. Physical Review E, 82(3), 036120.

Lima, D. L., Alves, T. S., Oliveira, A. P. G., Catalani, T. G. T., Dalmas, F. B., & Paranhos Filho, A. C. (2020). Semiautomatic and quantification identification of deforestation by Remote Sensing. Research, Society and Development, 9(4), 30942721.

Luque, B., Lacasa, L., Ballesteros, F., & Luque, J. (2009). Horizontal visibility graphs: Exact results for random time series. Physical Review E, 80(4), 046103.

Marengo, J. A., Tomasella, J., Alves, L. M., Soares, W. R., & Rodriguez, D. A. (2011). The drought of 2010 in the context of historical droughts in the Amazon region. GeophysicalResearchLetters, 38(12).

Melo, D. F., Soares, J. A. B., Vieira, K. P. M., Giongo, P. R., Gomes, L. F., Cunha, F. N., & Sobrinho, O. P. L. (2020). Spatio-temporal analysis of fires in the Municipality of Santa Helena de Goiás. Research, Society and Development, 9(7).

Nobre, C. A., & Borma, L. D. S. (2009). ‘Tipping points’ for the Amazon forest. Current Opinion in Environmental Sustainability, 1(1), 28-36.

Nogueira, J. M., Rambal, S., Barbosa, J. P. R., & Mouillot, F. (2017). Spatial pattern of the seasonal drought/burned area relationship across Brazilian biomes: Sensitivity to drought metrics and global remote-sensing fire products. Climate, 5(2), 42.

Pierini, J. O., Lovallo, M., & Telesca, L. (2012). Visibility graph analysis of wind speed records measured in central Argentina. Physica A: Statistical Mechanics and its Applications, 391(20), 5041-5048.

Pivello, V. R. (2011). The use of fire in the Cerrado and Amazonian rainforests of Brazil: past and present. Fire ecology, 7(1), 24-39.

Santos, A. C. A., Finger, A., Nogueira, J. D. S., Curado, L. F. A., Palácios, R. D. S., & Pereira, V. M. R. (2016). Analysis of the concentration and composition of aerosols from fires in the matogrosso wetland. Química Nova, 39(8), 919-924.

Santos, J. F. C., Gleriani, J. M., Velloso, S. G. S., de Souza, G. S. A., do Amaral, C. H., Torres, F. T. P.. & Dos Reis, M. (2019). Wildfires as a major challenge for natural regeneration in Atlantic Forest. Science of The Total Environment, 650, 809-821.

Sivakumar, B., & Woldemeskel, F. M. (2015). A network-based analysis of spatial rainfall connections. Environmental Modelling & Software, 69, 55-62.

Stam, C. J., & Reijneveld, J. C. (2007). Graph theoretical analysis of complex networks in the brain. Nonlinear biomedical physics, 1(1), 3.

Stosic, T., Telesca, L., da Costa, S. L. L., & Stosic, B. (2016). Identifying drought-induced correlations in the satellite time series of hot pixels recorded in the Brazilian Amazon by means of the detrended fluctuation analysis. Physica A: Statistical Mechanics and its Applications, 444, 660-666.

Telesca, L., & Lovallo, M. (2012). Analysis of seismic sequences by using the method of visibility graph. EPL (Europhysics Letters), 97(5), 50002.

Zou, Y., Donner, R. V., Marwan, N., Donges, J. F., & Kurths, J. (2019). Complex network approaches to nonlinear time series analysis. Physics Reports, 787, 1-97.

Published

20/08/2020

How to Cite

Silva, J. M. da ., Araújo, L. da S., Stosic, T., & Stosic, B. (2020). Analysis of satellite time series of hot pixels in brazilian biomes using the Horizontal Visibility Graph. Research, Society and Development, 9(9), e308996276. https://doi.org/10.33448/rsd-v9i9.6276

Issue

Section

Agrarian and Biological Sciences