Effect of maturation stage on the physical-chemical composition and bioactive compounds of Solanum granosos-leprosum Dunal fruits

Authors

DOI:

https://doi.org/10.33448/rsd-v9i9.6323

Keywords:

Unconventional fruits; Fruit development; Chemical composition; Antioxidant activity.

Abstract

The aim of this study was to characterize the capoeira-branca (Solanum granuloso-leprosum Dunal) fruits cultivated in Lavras, Minas Gerais, Brazil. The fruit growth was evaluated, from inflorescence to ripening. For this, measurements were made weekly. The fruits were harvested and separated at three developmental maturation stages (1-immature; 2-green mature; 3-mature), according to the color and size. Then, the fruits were evaluated by size, weight, color, respiration, firmness, pH, titratable acidity, soluble solids, soluble pectin, centesimal composition, vitamin C and antioxidant activity at three stages. During maturation, the fruits showed increase in mass (0.4076 to 0.9956 g), size (7.9 to 12.2 mm), glycidic fraction (15.95 to 27.23%) and ash (0.94 to 1.60%) and reduction in firmness (4.23 to 1.50 kgf), moisture (79.24 to 69.45%) and protein (3.49 to 1.41%) contents. Furthermore, there was increase in soluble solids content (8.80 to 13.80%), antioxidant activity (62.57 to 69.63 μM de trolox.g-1 and 1880.34 to 4602.40 mg.100g-1) and vitamin C (46.81 to 236.02 mg.100g-1) and a decrease in the total phenolics (257.58 to 171.00 mg.100g-1) and soluble pectin (0.92 to 0.69 mg.g-1). The fruits, even after ripening, maintained their greenish color, although less intense than that observed in immature and mature green fruits.

References

Artés, F., Mínguez, M. I., & Hornero-Méndez, D. (2002). Analysing changes in fruit pigments. In Colour in Food: Improving quality, 248–282. Woodhead Publishing Limited and CRC Press LLC.

Association Of Official Analytical Chemists. (2016). Official methods of analysis (20th ed.). AOAC.

Ben Brahim, S., & Bouaziz, M. (2019). Characterization of rare virgin olive oils cultivated in southern Tunisia during fruits development process: major compounds and oxidative state in tandem with chemometrics. European Food Research and Technology, 245(4), 939–949. https://doi.org/10.1007/s00217-019-03230-2

Bitter, T., & Muir, H. M. (1962). A modified uronic acid carbazole reaction. Analytical Biochemistry, 4(4), 330–334. https://doi.org/10.1016/0003-2697(62)90095-7

Chitarra, M. I. F., & Chitarra, A. B. (2005). Pós-colheita de frutas e hortaliças: fisiologia e manuseio (2nd ed.). UFLA.

Chylińska, M., Szymańska-Chargot, M., Deryło, K., Tchórzewska, D., & Zdunek, A. (2017). Changing of biochemical parameters and cell wall polysaccharides distribution during physiological development of tomato fruit. Plant Physiology and Biochemistry, 119, 328–337. https://doi.org/10.1016/j.plaphy.2017.09.010

Deepa, G. T., Chetti, M. B., Khetagoudar, M. C., & Adavirao, G. M. (2013). Influence of vacuum packaging on seed quality and mineral contents in chilli (Capsicum annuum L.). Journal of Food Science and Technology, 50(1), 153–158. https://doi.org/10.1007/s13197-011-0241-3

Devgan, K., Kaur, P., Kumar, N., & Kaur, A. (2019). Active modified atmosphere packaging of yellow bell pepper for retention of physico-chemical quality attributes. Journal of Food Science and Technology, 56(2), 878–888. https://doi.org/10.1007/s13197-018-3548-5

El Arem, A., Saafi, E. B., Flamini, G., Issaoui, M., Ferchichi, A., Hammami, M., Helall, A. N., & Achour, L. (2012). Volatile and nonvolatile chemical composition of some date fruits (Phoenix dactylifera L.) harvested at different stages of maturity. International Journal of Food Science & Technology, 47(3), 549–555. https://doi.org/10.1111/j.1365-2621.2011.02876.x

Fawole, O. A., & Opara, U. L. (2013). Changes in physical properties, chemical and elemental composition and antioxidant capacity of pomegranate (cv. Ruby) fruit at five maturity stages. Scientia Horticulturae, 150, 37–46. https://doi.org/10.1016/j.scienta.2012.10.026

Gapper, N. E., McQuinn, R. P., & Giovannoni, J. J. (2013). Molecular and genetic regulation of fruit ripening. Plant Molecular Biology, 82(6), 575–591. https://doi.org/10.1007/s11103-013-0050-3

Gomez, M. L. P., & Lajolo, F. M. (2008). Ascorbic acid metabolism in fruits: activity of enzymes involved in synthesis and degradation during ripening in mango and guava. Journal of the Science of Food and Agriculture, 88(5), 756–762. https://doi.org/10.1002/jsfa.3042

Gonçalves, G. A. S., Resende, N. S., Carvalho, E. E. N., Resende, J. V. de, & Vilas Boas, E. V. de B. (2017). Effect of pasteurisation and freezing method on bioactive compounds and antioxidant activity of strawberry pulp. International Journal of Food Sciences and Nutrition, 68(6), 682–694. https://doi.org/10.1080/09637486.2017.1283681

Gonçalves, N. P., Lucena, E. M. P. de, Bonilla, O. H., & Tavares, F. J. C. (2017). Physico-chemical composition of native fruits of the Ceará coast at different development stages. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(9), 640–644. https://doi.org/10.1590/1807-1929/agriambi.v21n9p640-644

Guedes, M. N. S., Rufini, J. C. M., Marques, T. R., Melo, J. O. F., Ramos, M. C. P., & Viol, R. E. (2017). Minerals and phenolic compounds of cagaita fruits at different maturation stages (Eugenia dysenterica). Revista Brasileira de Fruticultura, 39(1). https://doi.org/10.1590/0100-29452017360

Henrique, P., Aranha, A., Soares, E., Dantas, R., Cioffi, N., & Garcia, D. (2017). Influence of the maturation stage on the physical-chemical quality of fruits of umbu (Spondias tuberosa). Scientia Agropecuaria, 8, 73–78. https://doi.org/10.17268/sci.agropecu.2017.01.07

Jacomassa, F. A. F., & Pizo, M. A. (2010). Birds and bats diverge in the qualitative and quantitative components of seed dispersal of a pioneer tree. Acta Oecologica, 36(5), 493–496. https://doi.org/10.1016/j.actao.2010.07.001

Jimenez, A., Creissen, G., Kular, B., Firmin, J., Robinson, S., Verhoeyen, M., & Mullineaux, P. (2002). Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta, 214(5), 751–758. https://doi.org/10.1007/s004250100667

Jiménez León, J., López Elías, J., Huez López, M. A., García López, A. M., Soto Ortiz, R., & Escoboza García, L. F. (2013). Postharvest quality and shelf life of green pepper (Capsicum annuum L.) grown under open-field and greenhouse conditions. Idesia (Arica), 31(4), 35–41. https://doi.org/10.4067/S0718-34292013000400005

Kidmose, U., Edelenbos, M., Nørbæk, R., & Christensen, L. P. (2002). Colour stabilty in vegetables. In Colour in Food: Improving quality (1st ed.), 179–232. Woodhead Publishing Limited and CRC Press LLC.

Körner, C. (2015). Paradigm shift in plant growth control. Current Opinion in Plant Biology, 25, 107–114. https://doi.org/10.1016/j.pbi.2015.05.003

Kumar, A., & Gill, P. S. (2017). Developmental dynamics in chemical composition during fruit ripening of pomegranate. Journal of Environmental Biology, 38(5), 805–813. https://doi.org/10.22438/jeb/38/5/MRN-299

Lado, J., Gambetta, G., & Zacarias, L. (2018). Key determinants of citrus fruit quality: Metabolites and main changes during maturation. Scientia Horticulturae, 233, 238–248. https://doi.org/10.1016/j.scienta.2018.01.055

Lago-Vanzela, E. S., Ramin, P., Umsza-Guez, M. A., Santos, G. V., Gomes, E., & Silva, R. da. (2011). Chemical and sensory characteristics of pulp and peel “cajá-manga” (Spondias cytherea Sonn.) jelly. Ciência e Tecnologia de Alimentos, 31(2), 398–405. https://doi.org/10.1590/S0101-20612011000200018

Lago, R. C. do, Silva, J. S., Pinto, K. M., Rodrigues, L. F., & Boas, E. V. de B. V. (2020). Effect of maturation stage on the physical, chemical and biochemical composition of black mulberry. Research, Society and Development, 9(4), 49942824. https://doi.org/10.33448/rsd-v9i4.2824

Lamikanra, O. (2002). Enzymatic Effects on Flavor and Texture of Fresh-cut Fruits and Vegetables. In Fresh-Cut Fruits and Vegetables. CRC Press. https://doi.org/10.1201/9781420031874.ch6

Magalhães, D. S., Silva, D. M., Ramos, J. D., Salles Pio, L. A., Pasqual, M., Vilas Boas, E. V. B., Galvão, E. C., & Melo, E. T. (2019). Changes in the physical and physico-chemical characteristics of red-pulp dragon fruit during its development. Scientia Horticulturae, 253, 180–186. https://doi.org/10.1016/j.scienta.2019.04.050

Maieves, H. A., Ribani, R. H., Morales, P., & Sánchez-Mata, M. C. (2015). Evolution of the nutritional composition of Hovenia dulcis Thunb. pseudofruit during the maturation process. Fruits, 70(3), 181–187. https://doi.org/10.1051/fruits/2015011

McCready, R. M., & McComb, E. A. (1952). Extraction and Determination of Total Pectic Materials in Fruits. Analytical Chemistry, 24(12), 1986–1988. https://doi.org/10.1021/ac60072a033

Medina, M. B. (2011). Determination of the total phenolics in juices and superfruits by a novel chemical method. Journal of Functional Foods, 3(2), 79–87. https://doi.org/10.1016/j.jff.2011.02.007

Mo, H., Jang, K., Hwang, J., Jeon, S., & Kim, B.-S. (2015). Horticultural and chemical quality characterization of accessions selected from four species of Capsicum. Horticulture, Environment, and Biotechnology, 56(1), 54–66. https://doi.org/10.1007/s13580-015-0078-0

Murrinie, E. D., Yudono, P., Purwantoro, A., & Sulistyani, E. (2017). Morphological and Physiological Changes During Growth and Development of Wood-apple (Feronia limonia (L.) Swingle) Fruit. International Journal of Botany, 13(2), 75–81. https://doi.org/10.3923/ijb.2017.75.81

Paliyath, G., Murr, D. P., Handa, A. K., & Lurie, S. (2008). Postharvest biology and technology of fruits, vegetables, and flowers (1st ed.). John Wiley & Sons.

Peñuelas, J., Sardans, J., Ogaya, R., & Estiarte, M. (2008). Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: effect of simulated climate change. Polish Journal of Ecology, 56(4), 613–622.

Pérez, W., & Mojica, J. (2018). Análisis fisicoquímico de frutos de Syzygium paniculatum en diferentes estados de maduración. Entre Ciencia e Ingeniería, 12(24), 124. https://doi.org/10.31908/19098367.3822

Petenatti, E. M., Petenatti, M. E., & Del Vitto, L. A. (1998). Medicamentos Herbarios en el Centro-Oeste Argentino. “Ambay”: Control de Calidad de la Droga Oficial y sus Adulterantes. Acta Farmaceutica Bonaerense, 17(3), 197–212.

Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Analytical Biochemistry, 269(2), 337–341. https://doi.org/10.1006/abio.1999.4019

Rudke, A. R., Mazzutti, S., Andrade, K. S., Vitali, L., & Ferreira, S. R. S. (2019). Optimization of green PLE method applied for the recovery of antioxidant compounds from buriti (Mauritia flexuosa L.) shell. Food Chemistry, 298(May), 125061. https://doi.org/10.1016/j.foodchem.2019.125061

Rufino, Maria do Socorro M., Alves, R. E., Brito, E. S., Pérez-Jiménez, J., Saura-Calixto, F., & Mancini-Filho, J. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 121(4), 996–1002. https://doi.org/10.1016/j.foodchem.2010.01.037

Rufino, M. S. M., Alves, R. E., Brito, E. S., Morais, S. M., Sampaio, C. G., Pérez-Jiménez, J., & Saura-Calixto, F. D. (2007). Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas pela Captura do Radical Livre DPPH. Embrapa Agroindústria Tropical.

Russo, M., Fanali, C., Tripodo, G., Dugo, P., Muleo, R., Dugo, L., De Gara, L., & Mondello, L. (2018). Analysis of phenolic compounds in different parts of pomegranate (Punica granatum) fruit by HPLC-PDA-ESI/MS and evaluation of their antioxidant activity: application to different Italian varieties. Analytical and Bioanalytical Chemistry, 410(15), 3507–3520. https://doi.org/10.1007/s00216-018-0854-8

Sabir, S. M., & Rocha, J. B. T. (2008). Antioxidant and hepatoprotective activity of aqueous extract of Solanum fastigiatum (false “Jurubeba”) against paracetamol-induced liver damage in mice. Journal of Ethnopharmacology, 120(2), 226–232. https://doi.org/10.1016/j.jep.2008.08.017

Seraglio, S. K. T., Schulz, M., Nehring, P., Della Betta, F., Valese, A. C., Daguer, H., Gonzaga, L. V., Fett, R., & Costa, A. C. O. (2018). Nutritional and bioactive potential of Myrtaceae fruits during ripening. Food Chemistry, 239, 649–656. https://doi.org/10.1016/j.foodchem.2017.06.118

Shi, J., Pan, Z., McHugh, T. H., Wood, D., Zhu, Y., Avena-Bustillos, R. J., & Hirschberg, E. (2008). Effect of Berry Size and Sodium Hydroxide Pretreatment on the Drying Characteristics of Blueberries under Infrared Radiation Heating. Journal of Food Science, 73(6), E259–E265. https://doi.org/10.1111/j.1750-3841.2008.00816.x

Silva, E. P., Vilas Boas, E. V. B., Rodrigues, L. J., & Siqueira, H. H. (2009). Caracterização física, química e fisiológica de gabiroba (Campomanesia pubescens) durante o desenvolvimento. Ciência e Tecnologia de Alimentos, 29(4), 803–809. https://doi.org/10.1590/S0101-20612009000400016

Silva, J. A. A., Grizotto, R. K., Miguel, F. B., & Bárbaro, I. M. (2011). Caracterização físico-química de frutos de clones de doviális (Dovyalis abyssinica Warb). Revista Brasileira de Fruticultura, 33(spe1), 466–472. https://doi.org/10.1590/S0100-29452011000500062

Smanalieva, J., Iskakova, J., Oskonbaeva, Z., Wichern, F., & Darr, D. (2019). Determination of physicochemical parameters, phenolic content, and antioxidant capacity of wild cherry plum (Prunus divaricata Ledeb.) from the walnut-fruit forests of Kyrgyzstan. European Food Research and Technology, 245(10), 2293–2301. https://doi.org/10.1007/s00217-019-03335-8

Strohecker, R. L., & Henning, H. M. (1967). Analisis de vitaminas: métodos comprobados. Paz Montalvo.

Taiti, C., Costa, C., Menesatti, P., Caparrotta, S., Bazihizina, N., Azzarello, E., Petrucci, W. A., Masi, E., & Giordani, E. (2015). Use of volatile organic compounds and physicochemical parameters for monitoring the post-harvest ripening of imported tropical fruits. European Food Research and Technology, 241(1), 91–102. https://doi.org/10.1007/s00217-015-2438-6

Tessmer, M. A., Besada, C., Hernando, I., Appezzato-da-Glória, B., Quiles, A., & Salvador, A. (2016). Microstructural changes while persimmon fruits mature and ripen. Comparison between astringent and non-astringent cultivars. Postharvest Biology and Technology, 120, 52–60. https://doi.org/10.1016/j.postharvbio.2016.05.014

Toivonen, P. M. A., & Deell, J. R. (2002). Physiology of Fresh-cut Fruits and Vegetables. In Fresh-cut fruits and vegetables: science, technology, and market. CRC Press.

Vallés, D., Bruno, M., López, L. M. I., Caffini, N. O., & Cantera, A. M. B. (2008). Granulosain I, a Cysteine Protease Isolated from Ripe Fruits of Solanum granuloso -leprosum (Solanaceae). The Protein Journal, 27(5), 267–275. https://doi.org/10.1007/s10930-008-9133-4

Vallés, D., Furtado, S., Villadóniga, C., & Cantera, A. M. B. (2011). Adsorption onto alumina and stabilization of cysteine proteinases from crude extract of Solanum granuloso-leprosum fruits. Process Biochemistry, 46(2), 592–598. https://doi.org/10.1016/j.procbio.2010.10.016

Zhang, L., Yue, P., Jiang, J., Fan, J., & Gao, X. (2016). Effect of phenolic compounds on antioxidant activity in 8 blueberry (Vaccinum spp.) juices. Carpathian Journal of Food Science and Technology, 8(2), 178–186.

Downloads

Published

09/08/2020

How to Cite

Macedo, L. L., Araújo, C. da S., Vilela, D. R., Fonseca, H. C., Goulart, N. M. V., & Boas, E. V. de B. V. . (2020). Effect of maturation stage on the physical-chemical composition and bioactive compounds of Solanum granosos-leprosum Dunal fruits. Research, Society and Development, 9(9), e22996323. https://doi.org/10.33448/rsd-v9i9.6323

Issue

Section

Agrarian and Biological Sciences