Pesticides in insectivorous birds: a quantitative analysis of the contamination outlook

Authors

DOI:

https://doi.org/10.33448/rsd-v9i9.6483

Keywords:

Pesticides; Birdlife; Scientometrics; Ecotoxicology; Environmental impact.

Abstract

The main pesticides used are insecticides, herbicides and fungicides. From these substrates, wild fauna is exposed to these pollutants. However, birds show greater degrees of sensitivity, when compared to other vertebrates, the exposure of various compounds used in agriculture. Thus, through a scientometric approach, the objective of the present study was to verify and characterize the development of the worldwide scientific knowledge about the contamination of insectivorous birds by pesticides. In the search conducted with a focus on publications that investigated pesticides in insectivorous birds a total of 155 articles were identified for the period from 2014 to 2108. After the thorough selection process of the articles, we obtained only 6 articles that carried out studies of contamination in birds insectivores through some type of pesticide. These studies studied 52 species of birds where 23 of these species showed a population trend classified as decreasing (DE). The results showed that they had at least one organ / tissue / structure (stomach bolus, blood plasma, muscle tissue, food items,) contaminated by one of the 29 types of chemical compounds found in the analyzed articles. Although it has been found that there is a global theoretical gap in relation to ecotoxicological research, demonstrating the impact of pesticides on the environment, studies with insectivorous birds have shown to be excellent mechanisms for environmental monitoring in the face of changes occurring in ecosystems, resulting from production and can provide relevant information for decision-making and the establishment of public policies in Brazil and worldwide.

Author Biographies

Milena Santos Batista, Universidade do Estado de Mato Grosso

Graduanda em Biologia

Bruno Ramos Brum, Universidade do Estado de Mato Grosso

Programa de Pós-Graduação em Ciências Ambientais - UNEMAT

Thaysa Costa Hurtado, Universidade do Estado de Mato Grosso

Departamento de Biologia

References

Amâncio, S., Souza, V. B., & Melo, C. (2008). Columba livia e Pitangus sulphuratus como indicadoras de qualidade ambiental em área urbana. Revista Brasileira de Ornitologia. 16(1), 32-7.

Anderson, D. W., et al.( 1982). Residues of op-DDT in southern California coastal sediments in 1971. Bulletin of Environmental Contamination and Toxicology, New York, 29(1), 429-33.

Barboza, L. G. A., Thomé, H. V., Ratz, R. J., & Moraes, A. J. (2012). Para além do discurso ambientalista: percepções, práticas e perspectivas da agricultura agroecológica. Ambiência, Guarapuava, 8(2), 389 – 401.

Blus, L. J., Wiemeyer, S. N., & Bunck, C. M. (1997). Clarification of effects of DDE on shell thickness, size, mass, and shape of avian eggs. Environmental Pollution, London, 95(1), 67-74.

Boatman, N. D., Brickle, N. W., Hart, J. D., Milsom, T. P., Morris, A. J., Murray, A. W. A., Murray, K. A. & Robertson, P. A. (2004). Evidence for the indirect effects of pesticides on farmland birds. Ibis,146(2),131–143.

Brown, K. S. (1997). Insetos como rápidos e sensíveis indicadores de uso sustentável de recursos naturais. In: Martos, H. L., & Maia, N. B. (Ed.). Indicadores ambientais. Sorocaba, 143-151.

Brum, B. R., D’Ávila R. S., Sguarezi, S. B., Santos-Filho, M., & Ignácio, A. R. A. (2020). Temporal analysis of the use of birds, as environmental sentinels in the monitoring of contamination by pesticides. Research, Society and Development, 9(7): 1-26, e752974807.

Chaiyarata, R., Sookjama, C., Eiam-Ampaib, K., & Damrongpho, P. (2014). Bioacumulação de pesticida organoclorados no fígado de pássaros do Pantanal de Broraphet, Tailândia. ScienceAsia 40.

Custer, T. W., Dummer, P. M., Custer, C. M., Franson, C. J., & Jones, M. (2014). Contaminant Exposure of Birds Nesting in Green Bay, Wisconsin, USA. Environmental Toxicology and Chemistry, 33(8), 1832–1839.

Cooke, A. S. (1973). Shell thinning in avian eggs by environmental pollutants. Environmental Pollution, London, 4, 85-152.

Dávila, E. S. (2012). Análise das Dissertações e Teses dos PPGs da Área do Ensino de ciências e matemática do RS – 2000 a 2011. Dissertação (Mestrado) – UFSM, Programa de Pós-Graduação em Educação em Ciências da Universidade Federal de Santa Maria, Santa Maria, RS.

Fava, J., Kendall, R. J., & Lacher, J. T. E. (1993). Wildlife toxicology and population modeling – integrated studies of agroecosystems. Boca Raton: CRC Press, 555-567.

Fry, M. (1995). Reproductive effects in birds exposed to pesticides and industrial chemicals. Environmental Health Perspectives, Research Triangle Park, 103(7), 165-171.

Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockstrom, J., Sheehan, J., Siebert, S., Tilman, D., & Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, Londres, 478, 337-342.

Gallo, M. A., & Lawryk, N. J. ( 1991). Organic phosphorous pesticides. In: Hayes Junior, W. J. & Laws Junior, E. R. (Ed.). Handbook of pesticide toxicology. California: Academic Press, 2, 917-1123.

Goldstein, M. L. (1999). Monitoring and assessment of swainson’s hawk in Argentina following restrictions on monocrotophos use,1996-97. Ecotoxicology, Dordrecht, 8(3), 215-224.

Goulson, D. (2013). An Overview of the Environmental Risks Posed by Neonicotinoid Insecticides. Journal of Applied Ecology, 50, 977–987.

Grue, C. E., & Shipley, B. K. (1984). Sensitivity if nesting and adult starlings to dicrotophos, na organophosphate pesticide. Environmental Researvh, New York, 35(2), 454 - 465.

Hall, G. B. (1994). Biology of freshwater pollution. Journal of Environmental Quality, 23(2), 387-388.

Hallmann, C. A., Foppen, R. P., van Turnhout, C. A., de Kroon, H., & Jongejans, E. (2014).Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature, 341–343.

Haroune, L., Cassoulet, R., Lafontaine, M. P., Bélisle, M., Garant, D., Pelletier, F., Cabana, H., & Bellenger J. P. (2015). Liquid chromatography-tandem mass spectrometry determination for multiclass pesticides from insect samples by microwave-assisted solvent extraction followed by a salt-out effect and micro-dispersion purification. Anal. Chim Acta 891,160–170.

Hurtado, T. C., Brum, B. R., Batista, M. S., D'Ávila, R. S., & Ignácio Áurea, R. A. (2020). Estudo temporal quantitativo da contaminação de aves aquáticas por metais. Pesquisa, Sociedade e Desenvolvimento , 9 (8), e993986710.

Ibama (2009). Produtos Agrotóxicos e Afins Comercializados em 2009 no Brasil. Recuperado de <http://www.ibama.gov.br/qualidade-ambiental/wpontent/files/Produtos agrotoxicos_Comercializados_Brasil_2009.pdf>.

Iucn (2020). The IUCN Red List of Threatened Species. Version 2020-1. Recuperado de:< https://www.iucnredlist.org/>

Kamiyama, A., Maria, I. C., Souza, D. C. C., & Silveira, A. P. D. (2011). Percepção ambiental dos produtores e qualidade do solo em propriedades orgânicas e convencionais. Bragantia, Campinas, 70(1), 176-184.

Mason, P., & Lockridge, O. (2010). Butyrylcholinesterase for protection from organophosphorus poisons: Catalytic complexities and hysteric behavior.Arch. Biochem. Biophys. 494, 107–120.

Mo, L., Zheng, X., Sim, Y., Yu, L., Luo, X., Cu, X., Qin, X., Gao, Y., & Mai, B. (2018). Selection of passerine birds as bio-sentinel of persistent organic pollutants in terrestrial environment. Science of the Total Environment. 1237- 1244.

Narvaeza, C., Ramirez-Otarolaa, N., Bozinovicb, F., Juan, C., & Sanchez-Hernandezc, P.S. (2015). Comparative intestinal esterases amongst passerine species: Assessing vulnerability to toxic chemicals in a phylogenetically explicit context. Chemosphere. 75-82

Nebel, S., Mills, A., McCracken, J., & Taylor, P. (2010). Declines of aerial insectivores in North America follow ageographic gradient. Avian Conservation and Ecology. 5(2) 1.

Opas (1996). Organização Pan-Americana de Saúde, OMS - Organização Mundial de Saúde representação do Brasil. Manual de vigilância da saúde de populações expostas a agrotóxicos. Brasília.

Parker, M. L., & Goldstein, M. I. (2000). Differential toxicities of organophosphate and carbamate insecticides in the nestiling Eutopean starling (Sturnus vulgaris). Archives of environmental contamination and toxicology, New York, 39(2), 233-242.

Pereira, A. S., et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de https://repositorio.ufsm.br/bitstream/ handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Peres, F., Moreira, J. C., & Dubois, G. S. (2003).Agrotóxicos, saúde e ambiente: uma introdução ao tema. In: Peres, F. & Moreira. J.C. É veneno ou é remédio? Agrotóxicos, saúde e ambiente. Rio de Janeiro: Ed. Fiocruz, 21 – 41.

Pignati, W. A., Lima, S. N. A. F., Lara, S. S., Correa, M. L. M., Barbosa, R. J., Leão, C. H. L. & Pignatti, G. M. (2017). Distribuição espacial do uso de agrotóxicos no Brasil: uma ferramenta para a Vigilância em Saúde. Ciência & Saúde Coletiva. 22(10), 3281-3293.

Ramirez-Otarola, N., Narvaez, C., & Sabat, P. (2011). Membrane-bound intestinal enzymes of passerine birds: dietary and phylogenetic correlates. J. Comp. Physiol. 181,817–827.

Scollon, E. J., et al. (2001). Chemical and biochemical evaluation of Swainson’s hawk mortalities in Argentina. In: Johnston, J.J. (Ed.). Pesticides and wildlife. Washington, DC: American Chemical Society. 771(21), 294-308.

Sick, H. (2001). Ornitologia Brasileira. Edição revista e ampliada por José Fernando Pacheco. Editora Nova Fronteira, Rio de Janeiro.862.

Silva, S. A. (2014). O agronegócio e as intoxicações agudas por agrotóxicos em Mato Grosso. Dissertação (Mestrado) Programa de Pós-Graduação em Saúde Coletiva. Universidade Federal de Mato Grosso Instituto de Saúde Coletiva. Cuiabá.

Soares, W. L.. & Porto, M. F. (2007). Atividade agrícola e externalidade ambiental: uma análise a partir do uso de agrotóxicos no cerrado brasileiro. Ciência & Saúde Coletiva, São Paulo, 12(1),131-143.

Soares, M. B. (1989). Alfabetização no Brasil: o estado do conhecimento. Brasília: Inep; Reduc, 157.

Sogorb, M. A., & Vilanova, E. (2002). Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol. 128, 215–228.

Stocking, M. A. (2003) Tropical soils and food security: the next 50 years. Science, Nova York, 302(1356), 1355-1359.

Stanton, R. L., Morrissey, C. A., & Clark, R. G., (2018). Analysis of trends and agricultural drivers of farmland bird declines in North America: A review. Agriculture Ecosystems & Environment. 244-254.

Wheelock, C. E., Phillips, B. M., Anderson, B. S., Miller, J. L., Miller, M. J., & Hammock, B. D. (2008). Applications of carboxylesterase activity in environmental monitoring and toxicity identification evaluations (TIEs). Rev. Environ. Contam. Toxicol. 195, 117–178.

Published

14/08/2020

How to Cite

Batista, M. S., Brum, B. R., Hurtado, T. C., & Ignácio, Áurea R. A. (2020). Pesticides in insectivorous birds: a quantitative analysis of the contamination outlook. Research, Society and Development, 9(9), e142996483. https://doi.org/10.33448/rsd-v9i9.6483

Issue

Section

Agrarian and Biological Sciences