Long-Term Time Prediction of Cumulative Number of Deaths in Brazil, China, Germany, Italy, Spain, the United States: an application to COVID-19 S-shaped models

Authors

DOI:

https://doi.org/10.33448/rsd-v9i8.6565

Keywords:

S-Curve; Pandemic; Coronavirus; Forecast.

Abstract

This research aims to adjust the Gompertz and Bertalanffy nonlinear regression model for the accumulated deaths by COVID-19 in six countries Brazil, United States, Germany, Italy, China, and Spain. It employed three different performance measures in the training process, adjusted determination coefficient , Akaike Information Criterion (AIC), and Residual Mean Square (RMS).  The Mean Absolute Percentage Error (MAPE) and the Relative Error (RE) criterion were used to select the best model in the test dataset. On the training dataset, the Bertalanffy model was the one that best described the growth of deaths for China, while the Gompertz model was the best for Brazil, Germany, Italy, Spain, and the United States. In contrast, the Bertalanffy model was the best for Spain in the test dataset, according to MAPE and RE. According to the Gompertz model, 214,100 CI (175,929;267,008) people will die in Brazil, that will reach a maximum of 1,577 with a prediction interval [1,367; 1,819] of daily new deaths at its disease peak. The nonlinear models studied described the number of deaths growth curve satisfactorily, providing parameters with practical interpretations. Evidence was found that Brazil may surpass the United States regarding the total number of deaths. Short and long-term time prediction, as well as the turning point of each country, are presented and compared to other predictive models of the literature.

Author Biography

André Luiz Pinto dos Santos, Universidade Federal Rural de Pernambuco

Bacharel em Estatística - UEPB

Mestre em Biometria e Estatística Aplicada - UFRPE

Doutor em Biometria e Estatística Aplicada - UFRPE

Pós-Doutorando do Programa de Pós-Graduação em Informática Aplicada - PPGIA

References

Baumgartner, M. T., Lansac-Toha, F. M., Coelho, M. T. P., Dobrovolski, R., & Diniz-Filho, J. A. F. (2020). Social distancing and movement constraint as the most likely factors for COVID-19 outbreak control in Brazil. medRxiv. doi: 10.1101/2020.05.02.200880

BBC News (2020, April 11). Coronavirus: US death toll passes 2,000 in a single day. BBC News. Retrieved from https://www.bbc.com/news/world-us-canada-52249963

Celik, S., Ankarali, H., & Pasin, O. (2020). Modelling of COVID-19 outbreak indicators in china between january and april. medRxiv.

Das Neves, K. D. Predictive analysis of covid-19 confirmed cases in brazil and eight countries based on the Gompertz nonlinear model. doi: 10.1590/SciELOPreprints.451

De Myttenaere, A., Golden, B., Le Grand, B., & Rossi, F. (2016). Mean absolute percentage error for regression models. Neurocomputing, 192, 38-48.

European Centre for Disease Prevention and Control (2020a). Recuperado de https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases

European Centre for Disease Prevention and Control (2020b). Recuperado de https://www.ecdc.europa.eu/sites/default/files/documents/COVID-19-rapid-risk-assessment-coronavirus-disease-2019-ninth-update-23-april-2020.pdf

De Lemos Menezes, P., Garner, D. M., & Valenti, V. E. (2020). Brazil is projected to be the next global COVID-19 pandemic epicenter. medRxiv. doi: 10.1101/2020.04.28.20083675

Fokas, A. S., Dikaios, N., & Kastis, G. A. (2020). COVID-19: Predictive Mathematical Models for the Number of Deaths in South Korea, Italy, Spain, France, UK, Germany, and USA. MedRxiv. doi: 10.1101/2020.05.08.20095489

Ghosal, S., Sengupta, S., Majumder, M., & Sinha, B. (2020). Linear Regression Analysis to predict the number of deaths in India due to SARS-CoV-2 at 6 weeks from day 0 (100 cases - March 14, 2020). Diabetes & metabolic syndrome, 14(4), 311–315.

Institute for Health Metrics and Evaluation (IHME) (2020a). Recuperado de http://www.healthdata.org/sites/default/files/files/Projects/COVID/PressRelease_Brasil-Portuguese-0525.pdf

Institute for Health Metrics and Evaluation (IHME) (2020b). Recuperado de http://www.healthdata.org/sites/default/files/files/Projects/COVID/Estimation_update_052520.pdf

Institute for Health Metrics and Evaluation (IHME) (2020c). Recuperado de http://www.healthdata.org/news-release/new-ihme-covid-19-projections-first-forecasts-select-nations-latin-america-asia-and

Institute for Health Metrics and Evaluation (IHME) (2020d). Recuperado de http://www.healthdata.org/news-release/new-ihme-forecast-projects-nearly-135000-covid-19-deaths-us

Imperial College (2020). Recuperado de https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-Global-unmitigated-mitigated-suppression-scenarios.xlsx

Kucharavy, D., & De Guio, R. (2011). Application of S-shaped curves. Procedia Engineering, 9, 559-572.

Melik-Huseynov, D. V., Karyakin, N. N., Blagonravova, A. S., Klimko, V. I., Bavrina, A. P., Drugova, O. V., & Kovalishena, О. V. (2020). Regression Models Predicting the Number of Deaths from the New Coronavirus Infection. Современные технологии в медицине, 12(2 (eng)).

Mellan, T. A., Hoeltgebaum, H. H., Mishra, S., Whittaker, C., Schnekenberg, R. P., Gandy, A., & Faria, N. R. (2020). Report 21: Estimating COVID-19 cases and reproduction number in Brazil. medRxiv. doi 10.1101/2020.05.09.20096701

Ministério da Saúde [MS]. (2020). Painel Coronavírus. Recuperado de https://covid.saude.gov.br/

Na Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang B., Shi W., Lu R., Niu P., Zhan F., Ma X., Wang D., Xu W., Wu G., Gao G. F., & Tan, W. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine. 382, 727-733. doi: 10.1056/NEJMoa2001017

Pan, W. (2001). Akaike's information criterion in generalized estimating equations. Biometrics, 57(1), 120-125.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Prado, B. (2020). COVID-19 in Brazil: “So what?”. TheLancet, 395, 10235, 1461.

Ribeiro, M. H. D. M., da Silva, R. G., Mariani, V. C., and dos Santos Coelho, L. (2020). Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil. Chaos, Solitons & Fractals, 135, 109853.

Rodriguez-Morales, A. J., Gallego, V., Escalera-Antezana, J. P., Méndez, C. A., Zambrano, L. I., Franco-Paredes, C., Suárez, J. A., Rodriguez-Enciso, H. D., Balbin-Ramon, G. J., Savio-Larriera, E., Risquez, A., & Cimerman, S. (2020). COVID-19 in Latin America: The implications of the first confirmed case in Brazil. Travel medicine and infectious disease, 35, 101613. https://doi.org/10.1016/j.tmaid.2020.101613

Santiago, E. J. P., da Silva Freire, A. K., de Almeida Ferreira, D. S., de Amorim, J. F., Cunha, A. L. X., de Freitas, J. R., Santiago, E. J. P., da Silva Freire, A. K., de Almeida Ferreira, D. S., de Amorim, J. F., Cunha, A. L. X., de Freitas, J. R., & Cunha Filho, M. (2020a). Velocity of deaths and confirmed cases of COVID-19 in Brazil, Italy and worldwide. Research, Society and Development, 9(7), 263974085. doi: http://dx.doi.org/10.33448/rsd-v9i7.4085

Santiago, E. J. P., da Silva Freire, A. K., Cunha Filho, M., Moreira, G. R., de Almeida Ferreira, D. S., & Cunha, A. L. X. (2020). (2020b). Non-linear models applicable to mortality and cases of COVID-19 in Brazil, Italy and the world. Research, Society and Development, 9(6), 117963561. doi: http://dx.doi.org/10.33448/rsd-v9i6.3561

Santos, A.L.P., de Figueiredo, M. P. S., Ferreira, T. A. E., Gomes-Silva, F., Moreira, G. R., Silva, J. E., & de Freitas, J. R. (2020). Analysis and forecasting of the evolution of COVID-19 death numbers in the state of Pernambuco and Ceará using regression models. Research, Society and Development, 9(7), 1-24, e602974551. doi: http://dx.doi.org/10.33448/rsd-v9i7.4551

Shen, C. Y. (2020). A logistic growth model for COVID-19 proliferation: experiences from China and international implications in infectious diseases. International Journal of Infectious Diseases. 96, 582-589. doi: https://doi.org/10.1016/j.ijid.2020.04.085

Shumaker, L. (2020, April 24). COVID-19 killing 2,000 Americans a day in April; US death toll exceeds Korean War. National Post. Recuperado de https://nationalpost.com/news/world/covid-19-killing-2000-americans-a-day-in-april-toll-exceeds-korean-wars/

Utkucan, Ş., & Tezcan, Ş. (2020). Forecasting the cumulative number of confirmed cases of COVID-19 in Italy, UK and USA using fractional nonlinear grey Bernoulli model. Chaos, Solitons & Fractals, 139, 109948. https://doi.org/10.1016/j.chaos.2020.109948

Vasconcelos, G. L., Macêdo, A. M., Ospina, R., Almeida, F. A., Duarte-Filho, G. C., & Souza, I. C. (2020). Modelling fatality curves of COVID-19 and the effectiveness of intervention strategies. medRxiv.

Wordometers (2020). Retrieved from https://www.worldometers.info/coronavirus/country/us/

Wu, K., Darcet, D., Wang, Q., & Sornette, D. (2020). Generalized logistic growth modeling of the COVID-19 outbreak in 29 provinces in China and in the rest of the world. arXiv preprint arXiv:2003.05681. https://arxiv.org/abs/2003.05681, 2020.

Yang, W., Zhang, D., Peng, L., Zhuge, C., & Hong, L. (2020a). Rational evaluation of various epidemic models based on the COVID-19 data of China. arXiv preprint arXiv:2003.05666.

Yang, S., Cao, P., Du, P., Wu, Z., Zhuang, Z., Yang, L., Yu, X., Zhou, Q., Feng, X., Wang, X., Li, W., Liu, E., Chen, J., Chen, Y., & He, D. (2020b). Early estimation of the case fatality rate of COVID-19 in mainland China: a data-driven analysis. Annals of translational medicine, 8(4), 128. https://doi.org/10.21037/atm.2020.02.66

Downloads

Published

30/07/2020

How to Cite

FIGUEIREDO, M. P. S. de; SANTOS, A. L. P. dos; FERREIRA, T. A. E.; QUEIROZ, M. P. L. J. de. Long-Term Time Prediction of Cumulative Number of Deaths in Brazil, China, Germany, Italy, Spain, the United States: an application to COVID-19 S-shaped models. Research, Society and Development, [S. l.], v. 9, n. 8, p. e749986565, 2020. DOI: 10.33448/rsd-v9i8.6565. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/6565. Acesso em: 17 nov. 2024.

Issue

Section

Exact and Earth Sciences