Quantitative temporal study on the contamination of waterfowl by metals

Authors

DOI:

https://doi.org/10.33448/rsd-v9i8.6710

Keywords:

Biomagnification; Scientometrics; Ecotoxicology.

Abstract

Potentially toxic elements can be considered serious environmental contaminants, as they do not degrade and have a cumulative effect on the environment and on the organism of several species. Considering that contamination by metals may be associated with the decline of waterfowl, the objective of this work was to perform a quantitative temporal analysis, through a scientometric approach on the contamination and possible decline of waterfowl that inhabit areas potentially contaminated by metals. 239 publications were found indexed in the two databases analyzed, with 218 publications in the Web of Science database, with a representation of (91.21%) and 21 publications (8.79%) in the Scopus database. The analyzed works studied 25 families and 66 bird species that had at least one organ / tissue / structure (liver, feces, stomach bolus, blood, lung, brain heart feather, bones, nail, muscle tissue, eggs) contaminated by at least one of the 18 metals found in the analyzed articles (Hg, Pb, Zn, Cu, Cd, Fe, Mg, Ca, Mn, Sr, As, Ni, Sc, Al, Ag, Co, Cr) and MeHg which is the organic form of Hg. The results of the analyzed researches indicated that the studied metals, can compromise the survival, foraging capacity of birds in their natural environment, also impairing the morphological development, which could decrease the possibility of reproductive success, and, therefore, contribute to the decline of water bird populations around the world.

References

Ackerman, J. T., Eagles-Smith, C. A., Herzog, M. P., Hartman, C. A. (2015). Maternal transfer of contaminants in birds: Mercury and selenium concwntrations in parentes and their eggs. Environmental Pollution210, 145-154.

Ackerman, J. T., Eagles-Smith, C. A., Herzog, M. P., Hartman, C. A., Peterson, S. H., Evers, D. C., & Bryan, C. E. (2016). Avian mercury exposure and toxicological risk across western North America: a synthesis. Science of the Total Environment, 568, 749-769.

Andres, B. A., Smith, P. A., Morrison, R. I. G., grato-trevor C. L., Brown, S. C., & Friis, C. A. (2013) Population estimates of North American shorebirds.Wader Study Group Bulletin 119(3), 178-194.

Baker, A. J., Gonzalez, P. M., Piersma, T., Niles, L. J., de Lima Serrano do Nascimento, I., Atkinson, P. W., & Aarts, G. (2004). Rapid population decline in red knots: fitness consequences of decreased refuelling rates and late arrival in Delaware Bay. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1541), 875-882.

Baker, A. J., Gonzalez, P. M., Serrano, I. L., Júnior, W. R. T., Efe, M. A., Rice, S., D’amico, V. L., Rocha, M. C., Chave, E. M. E. (2005) Assessment of the wintering área of red Knots in Maranhão, northern Brazil, in February 2005.

Bannigan, A., Scheible, W. R., Lukowitz, W., Fagerstrom, C., Wadsworth, P., Somerville, C., & Baskin, T. I. (2007). A conserved role for kinesin-5 in plant mitosis. Journal of cell science, 120(16), 2819-2827.

Baykov, B. D., Stoyanov, M. P., & Gugova, M. L. (1996).Cadmium and lead bioaccumulation in male chickens for high food concentrations.Toxicological & Environmental Chemistry, 54(1-4), 155-159.

Begon, M., Townsend, C. R., & Harper, J. L. (2010).Fundamentos de ecologia, Editora Artmed, 476 – 477.

Bervoets, L., Voets, J., Covaci, A., Chu, S., Qadah, D., Smolders, R., & Blust, R. (2005). Use of transplanted zebra mussels (Dreissena polymorpha) to assess the bioavailability of microcontaminants in Flemish surface waters. Environmental science & technology, 39(6), 1492-1505.

Bisinoti, M. C., & Jardim, W. F.(2004). O comportamento do metilmercúrio (metilhg) no ambiente. Quim. Nova, 27(4), 593-600.

Blukacz-Richards, E. A., Visha, A., Graham, M. L., McGoldrick, D. L., de Solla, S. R., Moore, D. J., & Arhonditsis, G. B. (2017) Mercury levels in herring gulls and fish: 42 years of spatio-temporal trends in the Great Lakes. Chemosphere, 172, 476-487.

Brasil Instituto Chico Mendes de Conservação da Biodiversidade. (2017). Ministério do Meio Ambiente. Plano de manejo da Estação Ecológica de Taiamã. Brasília: Ministério do Meio Ambiente.

Brooks, L. J., Campbell, J. W., & Murphy, J. W. (2015). Bioaccumulation of mercury in Wilson’s snipe from Alabama. Human–Wildlife Interactions, 9(2), 16.

Brum, B. R., D’Ávila R. S., Sguarezi, S. B., Santos-Filho, M., & Ignácio, A. R. A. (2020). Temporal analysis of the use of birds, as environmental sentinels in the monitoring of contamination by pesticides.Research, Society and Development, 9(7), 1-26.

Buck, K. A., Varian-Ramos, C. W., Cristol, D. A., & Swaddle, J. P. (2016). Blood mercury levels of zebra finches are heritable: implications for the evolution of mercury resistance. PloS one, 11(9).

Burger J., & Gochfeld, M. (1995). Growth and behavioral effects of early postnatal chromium and manganese exposure in herring gull (Larus argentatus) chicks. Pharmachol Biochem Behav, 50, 607-612.

Burger J., & Gochfeld, M. (1997). Heavy metal and selenium concentrations in feathers of egrets from Bali and Sulawesi, Indonesia.Arch Environ Contam Toxicol 32, 217-221.

Burger, J., & Gochfeld, M. (2000). Metal levels in feathers of 12 species of seabirds from Midway Atoll in the northern Pacific Ocean. Science of the Total Environment, 257(1), 37-52.

Burger, J., & Gochfeld, M. (2002).Effects of chemicals and pollution on seabirds.Biology of marine birds, 485-525.

Burger J., & Gochfeld M. (2004). Marine birds as sentinels of environmental pollution. EcoHealth,1, 263-274.

Burger J., & Gochfeld M. (2005). Effects of lead on learning in herring gulls: An avian wildlife model for neurobehavioral deficits. Neurotoxicol, 26, 615-624.

Burger, J., Gochfeld, M., Niles, L., Dey, A., Jeitner, C., Pittfield, T., TsipourA, N. (2014) Metals in tissues of migrant semipalmated sandpipers (Calidris pusilla) from Delaware Bay, New Jersey.Environmental Research,133, 362-370.

Burger, J., Tsipoura, N., Niles, L.J., Gochfeld, M., Dey, A., Mizrahi, D. (2015) Mercury, Lead, Cadmium, Arsenic, Chromium and Selenium in feathers of Shorebirds during Migrating through Delaware Bay, New Jersey: Comparing the and.Toxic,3,63-74.

Burgos-Núñez, S., Navarro-Frómeta, A., Marrugo-Negrete, J., Enamorado-Montes, G., & Urango-Cárdenas, I. (2017) Polycyclic aromatic hydrocarbons and heavy metals in the Cispata Bay, Colombia: A marine tropical ecosystem. Marine pollution bulletin, 120(1-2), 379-386.

Buxton, V. L., Evers, D. C., & Schoch, N. (2019) The influence of biotic and abiotic factors on banded common loon (Gavia immer) reproductive success in a remote, mountainous region of the northeastern United States. Ecotoxicology, 1-8.

Clark, R. B. Marine pollution.(2001) Nova York, Oxford University Press Inc. 237.

Clarkson, T. W. (2011) The three modern faces of Mercury. Environmental Health Perspectives, 10, 11-23.

De Lemos, C. T., & Terra, N. R. (2003) Poluição: causas, efeitos e controle. Genética Toxicológica. Porto Alegre. Ed. Alcance, 1, 119-138.

Dolgova, S., Popp, B. N., Courtoreille, K., Espie, R. H., Maclean, B., McMaster, M., & Hebert, C. E. (2018) Spatial trends in a biomagnifying contaminant: Application of amino acid compound–specific stable nitrogen isotope analysis to the interpretation of bird mercury levels.Environmental toxicology and chemistry, 37(5), 1466-1475.

Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., & Sullivan, C. A. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological reviews, 81(2), 163-182.

Durmuş, A. (2018).The mercury (Hg) concentrations in feathers of wild birds.Applied Ecology and Environmental Research, 16(3), 2973-2981.

Eagles-Smith, C. A., Ackerman, J. T., Willacker, J. J., Tate, M. T., Lutz, M. A., Fleck, J. A., & Davis, J. A. (2016). Spatial and temporal patterns of mercury concentrations in freshwater fish across the Western United States and Canada. Science of the Total Environment, 568, 1171-1184.

Einoder, L. D., MacLeod, C. K., & Coughanowr, C. (2018). Metal and isotope analysis of bird feathers in a contaminated estuary reveals bioaccumulation, biomagnification, and potential toxic effects. Archives of environmental contamination and toxicology, 75(1), 96-110.

Elliott, J. E., Kirk, D. A., Elliott, K. H., Dorzinsky, J., Lee, S., Inzunza, E. R., & Shaw, P. (2015) .Mercury in forage fish from Mexico and Central America: implications for fish-eating birds.Archives of environmental contamination and toxicology, 69(4), 375-389.

Fäth, J., & Göttlein, A. (2019). Assessing the leaching behavior of different gunshot materials in natural spring waters. Environmental Sciences Europe, 31(1), 1-10.

Ferreira, A. P., Horta, M. A. P. & Cunha, C. L. N.(2010). Avaliação das concentrações de metais pesados no sedimento, na água e nos órgãos de Nycticorax nycticorax(Garça-da-noite) na Baía de Sepetiba, RJ, Brasil. Revista da Gestão Costeira Integrada, 10(2),229-241.

Finger, A., Lavers, J. L., Dann, P., Kowalczyk, N. D., Scarpaci, C., Nugegoda, D., & Orbell, J. D. (2017).Metals and metalloids in Little Penguin (Eudyptula minor) prey, blood and faeces.Environmental pollution, 223, 567-574.

França, J. A. (2016). Biodiversidade e produtividade de arroz inundado. 48 f. Dissertação (mestrado) - Universidade Federal de São João Del-Rei, Programa de Pós-Graduação em Ciências Agrárias.

Fuchsman, P. C., Brown, L. E., Henning, M. H., Bock, M. J., & Magar, V. S. (2017). Toxicity reference values for methylmercury effects on avian reproduction: Critical review and analysis. Environmental toxicology and chemistry, 36(2), 294-319.

Gann, G. L., Powell, C. H., Chumchal, M. M., & Drenner, R. W. (2015) Hg‐contaminated terrestrial spiders pose a potential risk to songbirds at Caddo Lake (Texas/Louisiana, USA). Environmental toxicology and chemistry, 34(2), 303-306.

Gilbert, S. F. (2003) Biologia do desenvolvimento. 5ª edição. FUNPEC. SP.

Godwin, C. M., Smits, J. E., & Barclay, R. M. (2016).Metals and metalloids in nestling tree swallows and their dietary items near oilsands mine operations in Northern Alberta. Science of the Total Environment, 562, 714-723.

Gómez, C. (2006). Embriologia humana: Atlas e texto. 1ª edição. Guanabara Koogan. RJ.

Grajewska, A., Falkowska, L., & Reindl, A. (2019). Evaluation of claws as an alternative route of mercury elimination from the herring gull (Larus argentatus). Oceanological and Hydrobiological Studies, 48(2), 165-173.

Hebert, C. E. (2019). The river runs through it: The Athabasca River delivers mercury to aquatic birds breeding far downstream. PloS one, 14(4).

Howie, M. G., Jackson, A. K., & Cristol, D. A. (2018).Spatial extent of mercury contamination in birds and their prey on the floodplain of a contaminated river.science of the total environment, 630, 1446-1452.

Irena, H., Katarina, J., Branko, K., & Stefan, S. (2017).Allocation of Metals and Trace Elements in Different Tissues of Piscivorous Species Phalacrocorax carbo.Archives of environmental contamination and toxicology, 73(4), 533-541.

Jager, L. P., Rijinierse, F. V. J., Esselink, H., Baars, A. J.(1996). Biomonitoring with the buzzard Buteo buteo in the Netherlands: heavy metals and sources of variation. JornalOrnithology, 137, 295–318.

Kabata-Pendias, A., & Szteke, B. (2015).Trace elements in abiotic and biotic environments.CRC Press.

Kickbush, J. C., Mallory, M. L., Murimboh, J. D., Rand, J., Klapstein, S. J., Loder, A. L., & O'Driscoll, N. J. (2018).The influence of avian biovectors on mercury speciation in a bog ecosystem.Science of the Total Environment, 637, 264-273.

Kim E., Ichihashi H., Saeki K., Atrashkevich G., Tanabe S., &Tatsukawa R. (1996). Metal accumulation in tissues of seabirds from Chaun, northeast Siberia, Russia. Environ Pollut 92:247-252.

Kim E., &Koo T. (2007a).Heavy metal distribution in chicks of two heron species from Korea.Arch EnvironContam Toxicol, 54, 740-747.

Kim E, & Koo T (2007b), Heavy metal concentrations in diet and livers of black-crowned night heron Nycticorax nycticorax and grey heron Ardea cinerea chicks from Pyeongtaek, Korea. Ecotoxicology, 16, 411-416.

Kim E., & Koo T. (2007c). The use of feathers to monitor heavy metal contamination in herons, Korea.Arch Environ Contam Toxicol, 53,435-441.

Kitowski, I., Jakubas, D., Indykiewicz, P., & Wiącek, D. (2018). Factors affecting element concentrations in eggshells of three sympatrically nesting waterbirds in northern Poland. Archives of environmental contamination and toxicology, 74(2), 318-329.

Koster M. D., Ryckman D. P., Weselohb D. V. C., & Strugerc J. (1996). Mercury levels in great lakes herring gull (Larus argentatus) eggs, 1972-1992. Environ Pollut, 93, 261-270.

Kral, T., Blahova, J., Doubkova, V., Farkova, D., Vecerek, V., & Svobodova, Z. (2017). Accumulation of mercury in the tissues of the great cormorant (Phalacrocorax carbo) from common carp.Bulletin of environmental contamination and toxicology, 98(2), 167-171.

Kushlan J. A., & Hancock J. A. (2005) The herons. Oxford Academic Press, Oxford.

Lavoie, R. A., & Campbell, L. M. (2018) Mercury concentrations in Double-crested Cormorant chicks across Canada.Archives of environmental contamination and toxicology, 75(1), 111-120.

Lázaro, W. L., Díez, S., Silva, C. J., Ignácio, Á. R., & Guimarães, J. R. (2018). Seasonal changes in peryphytic microbial metabolism determining mercury methylation in a tropical wetland. Science of the Total Environment, 627, 1345-1352.

Lázaro, W. L., Díez, S., Bravo, A. G., Silva, C. J., Ignácio, Á. R., & Guimaraes, J. R. (2019). Cyanobacteria as regulators of methylmercury production in periphyton.Science of the total environment, 668, 723-729.

Legler, M., Leonhard, W., Koch, N. J., & Kummerfeld, N. (2015). Mercury concentrations in feathers of Common Swifts (Apus apus). Berliner und Munchener tierarztliche Wochenschrift, 128(7-8), 340-344.

Liu, J. L. J., Yuan, X., Zeng, G., Yuan, Y., Wu, H., Huang, X., Liu, J., Hua, S., Li, F., Li, X. (2015). An integrated model for assessing the risk of exposure to heavy metals in migratory birds in the wetland ecosystem: a case study in the wetland of Dongting Lake, Chinahemosphere, 135, 14–19.

Luo, J., Ye, Y., Gao, Z., Wang, Y., & Wang, W. (2015) Heavy metal contaminations and influence on the red-crowned crane (Grus japonensis) in Wuyur catchments, Northeastern China. Environmental earth sciences, 73(9), 5657-5667.

Luo, J., Wang, Y., Wang, Z., & Gao, Z. (2019) Assessment of Pb and Cd contaminations in the urban waterway sediments of the Nen River (Qiqihar section), Northeastern China, and transfer along the food chain. Environmental Science and Pollution Research, 26(6), 5913-5924.

Maddux, S. L., Cristol, D. A., Varian-Ramos, C. W., & Bradley, E. L. (2015).The effect of mercury on baseline corticosterone in a breeding songbird.Bulletin of environmental contamination and toxicology, 94(2), 135-139.

Majidi, Y., Bahramifar, N., & Ghasempouri, S. M. (2015). Pattern of mercury accumulation in different tissues of migratory and resident birds: Western reef heron (Egretta gularis) and Siberian gull (Larus heuglini) in Hara International Wetland—Persian Gulf. Environmental monitoring and assessment, 187(1), 4082.

Mallory, M. L., Braune, B. M., Provencher, J. F., Callaghan, D. B., Gilchrist, H. G., Edmonds, S. T., Allard, K., & O’driscoll, N. J. (2015). Mercury concentrations in feathers of marine birds in Arctic Canada. Article in Marine Pollution Bulletin. June.

Mallory, M. L., Provencher, J. F., Robertson, G. J., Braune, B. M., Holland, E. R., Klapstein, S., & O’Driscoll, N. J. (2018). Mercury concentrations in blood, brain and muscle tissues of coastal and pelagic birds from northeastern Canada.Ecotoxicology and environmental safety, 157, 424-430.

McCain, K. (1990). Mapping Authors in Intellectual Space: A Technical Overview.Journal of the American Society for Information Science, 41(6), 433–443.

Medunić, G., Kuharić, Ž., Fiket, Ž., Bajramović, M., Singh, A.L., Krivohlavek, A., & Dujmović, L. (2018). Selenium and other potentially toxic elements in vegetables and tissues of three non-migratory birds exposed to soil, water, and aquatic sediment contaminated with seleniferous Raša coal. Rudarsko-geološko-naftni zbornik, 33(3), 53-62.

Mirowski A. (2016).Selenium status in free-living animals in Poland.Cycie Weterynaryjne(em polonês) 91, 166–168.

Mizrahi D. M., & Peters K. A (2009). Relationsdhips betweem sandpipers and horseshoe crabs in Delaware Bay: A synthesis. In: Tancredi JT, Botton ML, Smith DR (eds) Biology and Conservation of Horseshoe Crabs Springer Science and Business Media, New York, 65-88.

Morran, S. A., Elliott, J. E., Young, J. M., Eng, M. L., Basu, N., & Williams, T. D. (2018). Ecologically-relevant exposure to methylmercury during early development does not affect adult phenotype in zebra finches (Taeniopygia guttata). Ecotoxicology, 27(3), 259-266.

Morrison R. I. G., Mizrahi D. S., Ross, R. K, Ottema O. H (2012). Dramatic Declines of Semipalmated Sandpipers on the Major Wintering Areas in the Guianas, Northen South America. Nyls de Pracontal and Andy Narine. Waterbirds 35, 120-134.

Morrison, R. I. G., Ross, R. K., & Niles, L. J. (2004). Declines in Wintering populatins of red Knots in Southern South America. The Condor 106, 60-70.

Neto, R. F. A. (2015). Efeitos dos metais pesados na saúde humana. Laboratório Franco do Amaral. Recuperado de <http://www.robertofrancodoamaral.com.br/blog/ alimentacao/efeitos -dosmetais- pesados-na-saude-humana>.

Ochoa, X., Suthers, D., Verbert, K., & Duval, E. (2014).Analysis and Reflections on the Third Learning Analytics and Knowledge Conference (LAK 2013).Journal of Learning Analytics, 1(2), 5–22.

Orłowski G., Hałupka L., Pokorny P., Klimczuk E., Sztwiertnia H., & Dobicki W. (2016).The effect of embryonic development on the metal and calcium content in eggs and eggshells in a small passerine.Ibis 158, 144–154.

Pereira A. S., Shitsuka D. M., Parreira F. J., & Shitsuka R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Pérez, X. L. O. (1998). Effects of nesting yellow-legged gulls (Larus cachinnans Pallas) on the heavy metal content of soils in the Cies Islands (Galicia, north-west Spain). Mar Pollut Bull ,36,267-272.

Peterson, S. H., Ackerman, J. T., & Eagles-Smith, C. A. (2017).A contaminação por mercúrio e isótopos estáveis revelam variabilidade na ecologia de forrageamento de gaivotas generalistas da Califórnia. Ecol Indic 74, 205-215.

Pinheiro, C. H. R., & Sígolo, J. B., (2006). Metais pesados e a dinâmica lacustre no parque ecológico do Tietê – Centro de Lazer Engenheiro Goulart – RMSP. Geologia USP Série Científica, 6(1), 29-39.

Plessl, C., Jandrisits, P., Krachler, R., Keppler, B. K., & Jirsa, F. (2017).Heavy metals in the mallard Anas platyrhynchos from eastern Austria.Science of the Total Environment, 580, 670-676.

Primack, R. B., & Rodrigues, E. (2001).Biologia da conservação, Londrina(SC): Planta, 328.

Raan, V. A. F. J. (1997). Scientometrics: State-of-the-art. Scientometrics, 38(1), 205–218.

Rahman, F., Ismail, A., Omar, H., & Hussin, M. Z. (2017). Exposure of the endangered Milky stork population to cadmium and lead via food and water intake in Kuala Gula Bird Sanctuary, Perak, Malaysia.Toxicology reports, 4, 502-506.

Rodrigues, A. A. F. (2000). Seasonal abundance of neartic shorebirds in the Gulf of Maranhã, Brazil, Journal of Field Ornninthology, 71(4), 665-675.

Rodrigues, A. A. F., Lopes, A. T. L. (2000).The occurence of Red Knots Calidris canutus in the north-cental coast of Brazil, Bulletin of British Ornithologist Club 120(4).

Rutkowska, M., Bajger-Nowak, G., Kowalewska, D., Bzoma, S., Kalisińska, E., Namieśnik, J., & Konieczka, P. (2019). Methylmercury and total mercury content in soft tissues of two bird species wintering in the Baltic Sea near Gdansk, Poland. Chemosphere, 219, 140-147.

Ruus, A., Øverjordet, I. B., Braaten, H. F. V., Evenset, A., Christensen, G., Heimstad, E. S., & Borgå, K. (2015).Methylmercury biomagnification in an Arctic pelagic food web.Environmental toxicology and chemistry, 34(11), 2636-2643.

Rzętała, M. A. (2016).Cadmium contamination of sediments in the water reservoirs in Silesian Upland (southern Poland).Journal of soils and sediments, 16(10), 2458-2470.

Sánchez-Virosta P., Espín S., García-Fernández A. J., & Eeva T. (2015). Uma revisão sobre a exposição e os efeitos do arsênico em aves passeriformes. Sci Total Environ 512, 506-525.

Sandoval, C., Mora, M. A., Sericano, J.,& Rech, R. R. (2019).Persistent Organic Pollutants in Livers and Hg in Feathers of Neotropic Cormorants (Phalacrocorax brasilianus) from the Trinity River Watershed (Texas, USA). Archives of environmental contamination and toxicology, 76(3), 405-413.

Santos, R. L. C. (2005). Relatório de viagem a Poconé – MT. Março / 2005. CETEM RV2005-001-00. Centro de Tecnologia Mineral / Ministério da Ciência e Tecnologia / Coordenação de Processos Metalúrgicos e Ambientais.

Silva, A. P., Câmara, V., Nascimento, O. C., Oliveira, L. J., Silva, E. C., Pivetta, F., & Barrocas, P. R. G (1998). Contaminação ambiental por mercúrio metálico na região amazônica: subsídios para um programa de vigilância das populações expostas. Centro Pan-Americano de Engenharia Sanitária e Ciências do Ambiente (CEPIS/OPS).

Sousa A. P. S., & Rodrigues A. A. F. (2015). Censo populacional do maçarico-de-peitovermelho Calidris canutus rufa na praia de Panaquatira, Maranhão,Brasil, em um ciclo anual. Ornithologia 8(1), 33-37.

Sujak, A., Wiącek, D., Jakubas, D., Komosa, A., & Kitowski, I. (2019). Mallards Anas platyrhynchos shot in Eastern Poland: ecological risk evaluated by analysis of trace elements in liver. Human and Ecological Risk Assessment: An International Journal, 25(8), 2116-2132.

Szumiło-Pilarska, E., Grajewska, A., Falkowska, L., Hajdrych, J., Meissner, W., Frączek, T., & Bzoma, S. (2016). Species differences in total mercury concentration in gulls from the Gulf of Gdansk (Southern Baltic). Journal of Trace Elements in Medicine and Biology, 33, 100-109.

Thompson, J., Wong, L., Lau, P. S., & Bannigan, J. (2008). Adherens junction breakdown in the periderm following cadmium administration in the chick embryo: distribution of cadherins and associated molecules. Reproductive Toxicology, 25(1), 39-46.

Vieira, L. M., & Alho, C. J. R.(2004). Contaminação por Mercúrio em Sedimento e Moluscos da Bacia do Rio Bento Gomes, MT. Boletim de Pesquisa e Desenvolvimento n.58 ISSN 1517-1981 Corumbá, MS: Embrapa Pantanal.

Vieira, L. M. (2006). Penas de aves como indicadores de mercúrio no Pantanal. Embrapa Pantanal, Corumbá. Recuperado de http://www.cpap.embrapa.br/publicacoes/online/ADM097

Weiss-Penzias, P. S., Gay, D. A., Brigham, M. E., Parsons, M. T., Gustin, M. S., & ter Schure, A. (2016). Trends in mercury wet deposition and mercury air concentrations across the US and Canada. Science of the Total Environment, 568, 546-556.

White, D. H., & Griffith, B. C. (1982). Authors as markers of intellectual space: Co-citation in studies of science, technology and society. Journal of Documentation, 38(4), 255–272.

Whitney, M., & Cristol, D. (2017).Rapid depuration of mercury in songbirds accelerated by feather molt.Environmental toxicology and chemistry, 36(11), 3120-3126.

Williamson, L., Hudson, M., O’Connell, M., Davidson, N., Young, R., Amano, T., Székely, T. (2013). Areas of high diversity for the world’s inland-breeding waterbirds. Biodivers Conserv, 22,1501-1512.

Yohannes, Y. B., Ikenaka, Y., Nakayama, S. M., Mizukawa, H., & Ishizuka, M. (2017). Trace element contamination in tissues of four bird species from the Rift Valley Region, Ethiopia. Bulletin of environmental contamination and toxicology, 98(2), 172-177.

Zabala, J., Rodriguez-Jorquera, I. A., Orzechowski, S. C., & Frederick, P. (2019).Mercury Concentration in Nestling Feathers Better Predicts Individual Reproductive Success than Egg or Nestling Blood in a Piscivorous Bird. Environmental science & technology, 53(3), 1150-1156.

Zarski, T. P., Rejt, L., Zarska, H., & Jarmul, J. (2015). Investigation on the distribution of mercury in tissues and organs of wild birds obtained from the area covered by Greater Warsaw. Journal of Elementology, 20(1).

Zhang, W., Eperon, G. E., & Snaith, H. J. (2016). Metal halide perovskites for energy applications.Nature Energy, 1(6), 1-8.

Published

06/08/2020

How to Cite

HURTADO, T. C.; BRUM, B. R.; BATISTA, M. S.; D’ ÁVILA, R. dos S.; IGNÁCIO, Áurea R. A. Quantitative temporal study on the contamination of waterfowl by metals. Research, Society and Development, [S. l.], v. 9, n. 8, p. e993986710, 2020. DOI: 10.33448/rsd-v9i8.6710. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/6710. Acesso em: 20 apr. 2024.

Issue

Section

Review Article