Phenological stage of jaboticaba tree (Plinia cauliflora) in the chemical composition of the essential oil of the leaves and antioxidant activity
DOI:
https://doi.org/10.33448/rsd-v9i9.7305Keywords:
α-copaene; Jaboticabeira; Myrtaceae; Free radical; Spathulenol.Abstract
Plants as Plinia cauliflora, a native Brazilian tree, could be a natural sources of safer antioxidants however there is no studies about the effects of the plant development stage on the essential oils (EO) or antioxidant activity. Objective: to evaluate the antioxidant activity, chemical composition and yield of essential oil from P. cauliflora leaves at phenological phases vegetative, flowering and fruiting. Methodology: the chemical composition was determined by gas chromatography coupled to mass spectrometry, and the antioxidant activity by three in vitro methods. Results: the leaf essential oil yield was the same for the vegetative, flowering and fruiting phases. The essential oil compounds have greater chemical diversity at flowering and fruiting phases. The higher antioxidant activity was obtained by β-carotene/ linoleic acid co-oxidation system. The oil from the vegetative phase protects 40.6% of β-carotene whereas the oils from the flowering and fruiting phases protect only 27.5% and 14.5% β-carotene, respectively. The analysis of the major compounds made evident that the predominant class were hydrocarbon sesquiterpenes with 67.0% (vegetative), 66.1% (flowering), and 59.4% (fruiting). The major compounds of EOs in the vegetative, flowering and fruiting phases were bicyclogermacrene (17.0, 14.5, and 11.0%), germacrene D (16.9, 15.9, and 12.4%) and trans-caryophyllene (9.2, 7.8, and 9.2%), respectively. In the vegetative phase, trans-2-hexenal (8.8%) and caryophyllene oxide (5.4%) stood out. Conclusion: P. cauliflora leaves are wasted after pruning and know about their essential oil could add value to jabuticaba production in Brazil.
References
Adams, R. P. (2017). Identification of essential oil components by gas chromatography/mass spectrometry, (5th ed.), Gruver: Texensis.
Apel, M. A., Sobral, M., Zuanazzi, J. A., & Henriques, A. T. (2006). Essential oil composition of four Plinia species (Myrtaceae). Flavour Fragr J, 21(3), 565-567.
Brasil, E. C., & Nascimento, E. V. S. (2010). Influence of limestone and phosphorus in development and production of varieties of yellow passion fruit. Rev Bras Frutic, 32(3), 892-902.
Camacho, J., Picó, J., & Ferrer, A. (2010). Data understanding with PCA: structural and variance information plots. Chemometr Intell Lab Syst, 100(1), 48-56.
Carocho, M., Morales, P., & Ferreira, I. C. (2018). Antioxidants: reviewing the chemistry, food applications, legislation and role as preservatives. Trends Food Sci Technol, 71, 107-120.
Cecotti, R., Carpana, E., Falchero, L., Paoletti, R., & Tava, A. (2012). Determination of the volatile fraction of Polygonum bistorta L. at different growing stages and evaluation of its antimicrobial activity against two major honeybee (Apis mellifera) pathogens. Chem Biodivers, 9(2), 359-369.
Coté, H., Boucher, M. A., Pichette, A., & Legault, J. (2017). Anti-inflammatory, antioxidant, antibiotic, and cytotoxic activities of Tanacetum vulgare L. essential oil and its constituents. Medicines (Basel), 4(34), 1-9.
Dias, A. L. B., Batista, H. R. F., Estevam, E. B. B., Alves, C. C. F., Forim, M. R., Nicolella, H. D., Furtado, R. A., Tavares, D. C., Silva, T. S., Martins, C. H. G., & Miranda, M. L. D. (2019). Chemical composition and in vitro antibacterial and antiproliferative activities of the essential oil from the leaves of Psidium myrtoides O. Berg (Myrtaceae). Nat Prod Res, 33(17), 2566-2570.
Duarte, A. R., Santos, S. C., Seraphinb, J. C., & Ferri, P. H. (2010). Environmental influence on phenols and essential oils of Myrciaria cauliflora leaves. J Braz Chem Soc, 21(9), 1672-1680.
Duarte, A. R., Santos, S. C., Seraphinb, J. C., & Ferri, P. H. (2012). Influence of spatial, edaphic and genetic factors on phenols and essential oils of Myrciaria cauliflora fruits. J Braz Chem Soc, 23(4), 737-746.
EMBRAPA – Empresa brasileira de pesquisa agropecuária. (2013). Sistema brasileiro de classificação de solos, (3rd ed.), Brasília: Embrapa.
Esteves, I., Souza, I. R., Rodrigues, M., Cardoso, L. G., Santos, L. S., Sertie, J. A., Perazzo, F. F., Lima, L. M., Schneedorf, J. M., Bastos, J. K., & Carvalho, J. C. (2005). Gastric antiulcer and anti-inflammatory activities of the essential oil from Casearia sylvestris Sw. J. Ethnopharmacol, 101(1), 191-196.
European Pharmacopoeia. (2013). (8th ed.), Strasbourg: Council of Europe.
Fallik, E., Archbold, D. D., Hamilton-Kemp, T. R., Clements, A. N., Collins, R. W., & Barth, M. M. (1998). (E)-2-hexenal can stimulate Botrytis cinerea growth in vitro and on strawberries in vivo during storage. J Amer Soc Hort Sci, 123(5), 875-881.
Ferré, L. (1995). Selection of components in principal component analysis: a comparison of methods. Comput Stat Data Anal, 19, 669-682.
Figueiredo, M. A. D., Pasqual, M., Araujo, A. G. D., Junqueira, K. P., Santos, F. C., & Rodrigues, V. A. (2008). Potassium sources of Cattleya loddigesii plants in vitro growth. Cienc Rural, 38(1), 255-257.
Hair, J. F., Black, W. C., Babin, B. I., Anderson, R. E., & Tatham, R. L. (2009). Análise multivariada de dados. (6th ed.), Porto Alegre: Bookman.
Halliwell, B., & Gutteridge, J. M. C. (2015). Free radicals in biology and medicine. (5th ed.), Oxford: University Press.
Hatanaka, A., & Harada, T. (1973). Formation of cis-3-hexenal, trans-2-hexenal and cis-3-hexenol in macerated Thea sinensis leaves. Phytochemistry, 12(12), 2341-2346.
Kulisic, T., Radonic, A., Katalinic, V., & Milos, M. (2004). Use of different methods for testing antioxidative activity of oregano essential oil. Food Chem, 85(4), 633-640.
Kusuma, I. W., Ogawa, T., Itoh, K., & Tachibana, S. (2004). Isolation and identification of an antifungal sesquiterpene alcohol from amboyna wood. Park J Biol Sci, 7(10), 1735-1740.
Lima, A. J. B., Corrêa, A. D., Alves, A. P. C., Abreu, C. M. P., & Dantas-Barros, A. M. (2008). Chemical characterization of the jabuticaba fruits (Myrciaria cauliflora Berg) and their fractions. Arch Latinoam Nutr, 58(4), 416-421.
López-Bucio, J., Hernández-Abreu, E., Sánchez-Calderón, L., Nieto-Jacobo, M. F., Simpson, J., & Herrera-Estrella, L. (2002). Phosphate availability alters architecture and causes changes in hormone sensitivity in the arabidopsis root system. Plant Physiol, 129, 244-256.
Lorenzi, H. (2002). Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil, (2nd ed.), Nova Odessa: Instituto Plantarum.
Marsaro Junior, A. L., Souza, R. C., Della Lucia, T. M. C., Fernandes, J. B., Silva, M. F. G. F., & Vieira, P. C. (2004). Behavioral changes in workers of the leaf-cutting ant Atta sexdens rubropilosa induced by chemical components of Eucalyptus maculata leave. J Chem Ecol, 30(9), 1771-1780.
Menezes, I. A. C., Marques, M. S., Santos, T. C., Dias, K. S., Silva, A. B., Mello, I. C. M., Lisboa, A. C. C. D., Alves, P. B., Cavalcanti, S. C. H., Marçal, R. M., & Antoniolli, A. R. (2007). Antinociceptive effect and acute toxicity of the essential oil of Hyptis fruticosa in mice. Fitoterapia, 78(3), 192-195.
Mevy, J. P., Bessiere, J. M., Dherbomez, M., Millogo, J., & Viano, J. (2007). Chemical composition and some biological activities of the volatile oils of a chemotype of Lippia chevalieri Moldenke. Food Chem, 101(2), 682-685.
Moita Neto, J. M., & Moita, G. C. (1998). An introduction analysis exploratory multivariate date. Quim Nova, 21(4), 467-469.
Moraes, G. G., Mazziero, M. M., Lovatto, M., Dornelles, R. C., Nogueira-Librelotto, D. R., Reuter, C. P., Ortolan, S., Da Silva, C. D. M., & Manfron, M. P. (2019). Preliminary phytochemical analysis and evaluation of the antioxidant and anti-proliferative effects of Plinia peruviana leaves: an in vitro approach. Nat Prod Res, 12, 1-9.
Natale, W., & Marchal, J. (2002). Absorption and distribution of nitrogen (15N) in Citrus mitis Bl. Rev Bras Frutic, 24(1), 183-188.
Omolo, M. O., Okinyo, D., Ndiege, I. O., Lwande, E., & Hassanali, A. (2004). Repellency of essential oils of some Kenyan plants against Anopheles gambiae. Phytochemistry, 65(20), 2797-2802.
Oyetayo, V. O. (2009). Free radical scavenging and antimicrobial properties of extracts of wild mushrooms. Braz J Microbiol, 40(2), 380-386.
Prieto, M. A., Rodríguez-Amado, I., Vázquez, J. A., & Murado, M. A. (2012). β-Carotene assay revisited. Application to characterize and quantify antioxidant and prooxidant activities in a microplate. J Agric Food Chem, 60(36), 8983-8993.
Rufino, M. S. M., Alves, R. E., Brito, E. S., Mancini-Filho, J., & Moreira, A. V. B. (2006a). Metodologia científica: determinação da atividade antioxidante total em frutas no sistema β-caroteno/ácido linoléico. Comunicado Técnico 126. Fortaleza: Embrapa Agroindústria Tropical.
Rufino, M. S. M., Alves, R. E., Brito, E. S., Morais, S. M., Sampaio, C. G., Pérez-Jiménez, J., & Saura-Calixto, F. D. (2006b). Metodologia científica: determinação da atividade antioxidante total em frutas pelo método de redução do ferro (FRAP). Comunicado Técnico 125. Fortaleza: Embrapa Agroindústria Tropical.
Rufino, M. S. M., Alves, R. E., Brito, E. S., Morais, S. M., Sampaio, C. G., Pérez-Jiménez, J., & Saura-Calixto, F. D. (2007). Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. Comunicado Técnico 127. Fortaleza: Embrapa Agroindústria Tropical.
Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects–a review. J Funct Food, 18(b), 820-897.
Silva, F. C. (2009). Manual de análises químicas de solos, plantas e fertilizantes, 2nd ed., Brasília: Embrapa Informação Tecnológica.
Silva, J. K. R. D., Andrade, E. H. A., Barreto, L. H., Da Silva, N. C. F., Ribeiro, A. F., Montenegro, R. C., & Maia, J. G. S. (2017). Chemical composition of four essential oils of Eugenia from the Brazilian amazon and their cytotoxic and antioxidant activity. Medicines (Basel), 4(51), 1-10.
Silva, J. K. R. D., Trindade, R. C. S. D., Maia, J. G. S., & Setzer, W. N. (2016). Chemical composition, antioxidant, and antimicrobial activities of essential oils of Endlicheria arenosa (Lauraceae) from the Amazon. Nat Prod Commun, 11(5), 695-698.
Silva, L. D., Oniki, G. H., Agripino, D. G., Moreno, P. R. H., Young, M. C. M., Mayworm, M. A. S., & Ladeira, A. M. (2007). Biciclogermacreno, resveratrol e atividade antifúngica em extratos de folhas de Cissus verticillata (L.) Nicolson & Jarvis (Vitaceae). Rev Bras Farmacogn, 17(3), 361-367.
Sinclair, T. R., & Horie, T. (1989). Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. Crop Sci, 29(1), 90-98.
Sobral, L. F., Barreto, M. C. V., Silva, A. J., & Anjos, J. L. (2015). Guia prático para interpretação de resultados de análises de solo. Aracajú: Embrapa Tabuleiros Costeiros.
Sousa, L. A., Albuquerque, J. C. R., Leite, M. N., & Stefanini, M. B. (2005). Seasonality of the secretory ducts and essential oil of Foeniculum vulgare var. vulgare Mill. (Apiaceae). Rev Bras Farmacogn, 15(2), 155-161.
Taiz, L., & Zeiger, E. (2009). Fisiologia vegetal, (4th ed.), Porto Alegre: Artemed.
Tavares, E. S., Julião, L. S., Lopes, D., Bizzo, H. R., Lage, C. L. S., & Leitão, S. G. (2005). Analysis of the essential oil from leaves of three Lippia alba (Mill.) N. E. Br. (Verbenaceae) chemotypes cultivated on the same conditions. Rev Bras Farmacogn, 15(1), 1-5.
Velioglu, Y. S., Mazza, G., Gao, L., & Oomah, B. D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem, 46(10), 4113-4117.
Veloso, C. A. C., Viégas, I. J. M., Oliveira, R. F., & Botelho, S. M. (2006). Amostragem de solo e planta para análise química. Documento 266. Belém: Embrapa Amazônia Oriental.
Wannes, W. A., Mhamdi, B., & Marzouk, B. (2009). GC comparative analysis of leaf essential oils from two myrtle varieties at different phenological stages. Chromatographia, 69(1-2), 145-150.
Xiang, C. P., Han, J. X., Li, X. C., Li, Y. H., Zhang, Y., Chen, L., Qu, Y., Hao, C. Y., Li, H. Z., Yang, C. R., Zhao, S. J., & Xu, M. (2017). Chemical composition and acetylcholinesterase inhibitory activity of essential oils from Piper species. J Agric Food Chem, 65(18), 3702-3710.
Yang, D., Michel, L., Chaumont, J. P., & Millet-Clerc, J. (2000). Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia, 148(2), 79-82.
Yang, X. N., Khan, L., & Kang, S. C. (2015). Chemical composition, mechanism of antibacterial action and antioxidant activity of leaf essential oil of Forsythia koreana deciduous shrub. Asian Pac J Trop Med, 8(9), 694-700.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Luana Tedesco; Wanessa de Campos Bortolucci; Eloisa Schneider Silva; José Eduardo Gonçalves; Nelson Barros Colauto; Zilda Cristiani Gazim; Giani Andrea Linde
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.