Influence of current density and mechanical agitation on the electrodeposition process of Zn-Ni alloys
DOI:
https://doi.org/10.33448/rsd-v9i9.7329Keywords:
Chemical composition; Electrodeposition; Zn-Ni alloy; Microhardness; Factorial design.Abstract
The effects of current density and mechanical agitation of the bath in the electrodeposition process to obtain the Zn-Ni alloy were evaluated. An electrolytic bath was used consisted of nickel sulfate, zinc sulfate, sodium sulfate, boric acid and sodium citrate at pH 7.0. The current density was evaluated in the range of 10-50 mA / cm², and, for mechanical agitation, it was evaluated in the range of 30-70 rpm. As optimization tool, a complete 2² factorial design was used with three central elements associated with the Response Surface Methodology (RSM). It was observed that the increase in current density and in mechanical agitation caused an increase in the atomic percentage of nickel in the coatings. The percentage of zinc increased with decreasing current density. The optimum nickel value obtained was 39 at.%. The electrodeposition was anomalous. The microhardness increased with the increase in the percentage of nickel and with the decrease in the percentage of Zn in the coating. The coatings showed nodules on the surface with different sizes and shapes.
References
Abou-Krisha, M. M., Rageh, H. M., & Matter, E. (2008). Electrochemical studies on the electrodeposited Zn-Ni-Co ternary alloy in different media. Surface and Coatings Technology, 202, 3739–3746.
Abou-Krisha, M. M. (2011). Influence of Ni2+ concentration and deposition potential on the characterization of thin electrodeposited Zn-Ni-Co coatings. Materials Chemistry and Physics, 125(3), 621–627.
Albalat, R., Gómez, E., Müller, C., Sarret, M., Vallés, E., & Pregonas, J. (1990). Electrodeposition of zinc-nickel alloy coatings: influence of a phenolic derivative. Journal of Applied Electrochemistry, 20, 635–639.
Assaf, F. H., El-Seidy, A. M. A., Abou-Krisha1, M. M. & Eissa, A. A. (2015). Electrodeposition and Characterization of Zn-Ni-Mn Alloy from Sulfate Bath: Influence of Current Density. International Journal of Electrochemical Science, 10, 5465-5478.
Barros-Neto, B., Scarminio, I. E., & BRUNS, R. (2010). Como fazer experimentos: aplicações na ciência e na indústria. 4th.
Beltowska-Lehman, E., Ozga, P., Swiatek, Z., & Lupi, C. (2002). Electrodeposition of Zn-Ni protective coatings from sulfate-acetate baths. Surface and Coatings Technology, 151–152, 444–448.
Brenner, A. (1963). Electrodeposition of Alloys (vol. I). New York: Academic Press.
Burkert, J. F. M., Maugeri, F., & Rodrigues, M. I. (2004). Optimization of extracellular lipase production by Geotrichum sp. using factorial design. Bioresource Technology, 91, 77–84.
Chang, L. M., Chen, D., Liu, J. H., & Zhang, R. J. (2009). Effects of different plating modes on microstructure and corrosion resistance of Zn-Ni alloy coatings. Journal of Alloys and Compounds, 479, 489–493.
Cojocaru, P., Magagnin, L., Gómez, E., & Vallés, E. (2010). Electrodeposition of CoNi and CoNiP alloys in sulphamate electrolytes. Journal of Alloys and Compounds, 503(2), 454–459.
Conde, A. A., M. A., & de Damborenea, J. J. (2011). Electrodeposition of Zn-Ni coatings as Cd replacement for corrosion protection of high strength steel. Corrosion Science, 53(4), 1489–1497.
Costa, J D, de Sousa, M. B., Alves, J. J. N., Evaristo, B. O., Queiroga, R. A., dos Santos, A. X., … Prasad, S. (2018). Effect of electrochemical bath composition on the preparation of Ni-W-Fe-P amorphous alloy. International Journal of Electrochemical Science, 13(3), 2969–2985.
Costa, J. D., de Sousa, M. B., Lia Fook, N. C. M., Alves, J. J. N., de Araújo, C. J., Prasad, S., … de Santana, R. A. C. (2016). Obtaining and characterization of Ni-Ti/Ti-Mo joints welded by TIG process. Vacuum, 133, 58–69.
Santos, A. X., Maciel, T. M., & de Santana, R. A. C. (2015). Avaliação de revestimentos a base de Inconel 625 depositados através do processo de soldagem GMAW em aço API 5L X70 utilizando planejamento fatorial. Revista Brasileira de Aplicações de Vácuo, 34(3), 128–140.
Dubent, S., Mertens, M. L. a D., & Saurat, M. (2010). Electrodeposition, characterization and corrosion behaviour of tin-20 wt.% zinc coatings electroplated from a non-cyanide alkaline bath. Materials Chemistry and Physics, 120(2–3), 371–380.
Feng, Z., Li, Q., Zhang, J., Yang, P., Song, H., & An, M. (2015). Electrodeposition of nanocrystalline Zn–Ni coatings with single gamma phase from an alkaline bath. Surface and Coatings Technology, 270, 47–56.
Gavrila, M., Millet, J. P., Mazille, H., Marchandise, D., & Cuntz, J. M. (2000). Corrosion behaviour of zinc-nickel coatings, electrodeposited on steel. Surface and Coatings Technology, 123, 164–172.
Gentil, V. (2011). Corrosão (ed. 6). Rio de Janeiro: LTC.
Gharahcheshmeh, M. H., & Sohi, M. H. (2009). Study of the corrosion behavior of zinc and Zn-Co alloy electrodeposits obtained from alkaline bath using direct current. Materials Chemistry and Physics, 117, 414–421.
Ghaziof, S., & Gao, W. (2014). Electrodeposition of single gamma phased Zn–Ni alloy coatings from additive-free acidic bath. Applied Surface Science, 311, 635–642.
Hamid, Z. A. (2001). Thermodynamic parameters of electrodeposition of Zn-Co-TiO composite coatings. Anti-Corrosion Methods and Materials, 48, 235–241.
Hammami, O., Dhouibi, L., & Triki, E. (2009). Influence of Zn-Ni alloy electrodeposition techniques on the coating corrosion behaviour in chloride solution. Surface and Coatings Technology, 203(19), 2863–2870.
Hegde, A. C., Venkatakrishna, K., & Eliaz, N. (2010). Electrodeposition of Zn–Ni, Zn–Fe and Zn–Ni–Fe alloys. Surface and Coatings Technology, 205(7), 2031–2041.
Jeong, S. S., Mittiga, a., Salza, E., Masci, a., & Passerini, S. (2008). Electrodeposited ZnO/Cu2O heterojunction solar cells. Electrochimica Acta, 53, 2226–2231.
Lin, Z. F., Li, X. B., & Xu-, L. K. (2012). Electrodeposition and corrosion behavior of zinc-nickel films obtained from acid solutions: Effects of teos as additive. International Journal of Electrochemical Science, 7, 12507–12517.
Lodhi, Z. F., Mol, J. M. C., Hovestad, a., Terryn, H., & de Wit, J. H. W. (2007). Electrodeposition of Zn-Co and Zn-Co-Fe alloys from acidic chloride electrolytes. Surface and Coatings Technology, 202, 84–90.
López, R. (1999). Magnetic study of electrodeposited Cu_Co heterogeneous alloys. Journal of Magnetism and Magnetic Materials, 196–197, 53–55.
MacIej, A., Nawrat, G., Simka, W., & Piotrowski, J. (2012). Formation of compositionally modulated Zn-Ni alloy coatings on steel. Materials Chemistry and Physics, 132(2–3), 1095–1102.
Oliveira, A. L. M., Costa, J. D., de Sousa, M. B., Alves, J. J. N., Campos, A. R. N., Santana, R. A. C., & Prasad, S. (2015). Studies on electrodeposition and characterization of the Ni–W–Fe alloys coatings. Journal of Alloys and Compounds, 619, 697–703.
Ortiz-Aparicio, J. L., Meas, Y., Trejo, G., Ortega, R., Chapman, T. W., Chainet, E., & Ozil, P. (2007). Electrodeposition of zinc-cobalt alloy from a complexing alkaline glycinate bath. Electrochimica Acta, 52, 4742–4751.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica [e-book].
Pushpavanam, M., Natarajan, S. R., Balakrishnan, K., & Sharma, L. R. (1991). Corrosion behaviour of electrodeposited zinc-nickel alloys. Journal of Applied Electrochemistry, 21, 642–645.
Qiao, X., Li, H., Zhao, W. & Li, D. (2013). Effects of deposition temperature on electrodeposition of zinc–nickel alloy coatings. Electrochimica Acta, 89, 771-777.
Rahman, M. J., Sen, S. R., Moniruzzaman, M., & Shorowordi, K. M. (2009). Morphology and Properties of Electrodeposited Zn-Ni Alloy Coatings on Mild Steel. Journal of Mechanical Engineering, 40(1).
Rao, K. M., & Subbarao, G. V. R. (2012). Optimum fly ash for mechanical stabilization of expansive soils using 2 2 factorial experimental design. Natural Hazards, 60, 703–713.
Santana, R. A. C, Prasad, S., Campos, A. R. N., Araújo, F. O., Da Silva, G. P., & De Lima-Neto, P. (2006). Electrodeposition and corrosion behaviour of a Ni-W-B amorphous alloy. Journal of Applied Electrochemistry, 36, 105–113.
Santana, R. A. C., Prasad, S., Moura, E. S., Campos, A. R. N., Silva, G. P., & Lima-Neto, P. (2007). Studies on electrodeposition of corrosion resistant Ni-Fe-Mo alloy. Journal of Materials Science, 42, 2290–2296.
Santos, A. X., Maciel, T. M., Costa, J. D., Sousa, M. B. de, Prasad, S., Campos, A. R. N., & Santana, R. A. C. de. (2019). Study on influence of the PTA-P welding process parameters on corrosion behavior of Inconel 625 coatings. Matéria (Rio de Janeiro), 24(1).
Soares, B. L. S., de Farias Ferreira, B. C., dos Santos, A. X., Maciel, T. M., & de Santana, R. A. C. (2020). Influência da corrente e taxa de alimentação na resistência à corrosão de revestimentos à base da liga Inconel 625 depositada por PTA-P. Revista Brasileira de Aplicações de Vácuo, 39(1), 56–66.
Soares, M. E., Souza, C. A. C., & Kuri, S. E. (2006). Corrosion resistance of a Zn-Ni electrodeposited alloy obtained with a controlled electrolyte flow and gelatin additive. Surface and Coatings Technology, 201(6), 2953–2959.
Srivastava, M., Ezhil Selvi, V., William Grips, V. K., & Rajam, K. S. (2006). Corrosion resistance and microstructure of electrodeposited nickel–cobalt alloy coatings. Surface and Coatings Technology, 201(6), 3051–3060.
Swathirajan, S. (1987). Electrodeposition of zinc + Nickel alloy phases and electrochemical stripping studies of the anomalous codeposition of zinc. Journal of Eletroanalytical Chemistry and Interfacial Electrochemistry, 221, 211–228.
Waalkes, M. P. (2003). Cadmium carcinogenesis. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 533(1–2), 107–120.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Josiane Dantas Costa; José Anderson Machado Oliveira; Alison Silva Oliveira; Anamélia de Medeiros Dantas Raulino; José Leonardo Costa Raulino; Arthur Filgueira de Almeida; Ana Regina Nascimento Campos; Renato Alexandre Costa de Santana
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.