Obtención, caracterización y aplicación de un Compuesto con Resina de Poliéster y Polvo de Hoja de Carnauba
DOI:
https://doi.org/10.33448/rsd-v9i9.7445Palabras clave:
Petiole powder from carnauba leaves; Polyester composite; Mechanical thermal and environmental characterizations; Solar Cooker.Resumen
La carnauba, el árbol de la vida, es una palmera que se encuentra en todas las regiones de Brasil y tiene muchas aplicaciones, desde la electrónica hasta la cosmética, con mayor énfasis en la cera. El objetivo de esta investigación fue obtener composites utilizando fibras de pecíolos de hojas de carnauba y resina de poliéster. El polvo se obtuvo mediante trituración del forraje y posterior tamizado, generando residuos con diferentes tamaños de grano. Se ensayaron todas las granulometrías obtenidas y se eligió la más pequeña, por su mayor viabilidad para la obtención del composite, por su mejor procesabilidad. Se eligieron tres proporciones de masa de la mezcla entre matriz y residuos, 5%, 7,5% y 10%, ya que por encima de ese porcentaje hubo un compromiso en la procesabilidad y obtención del composite estudiado. Se realizaron caracterizaciones mecánicas, térmicas y ambientales que demostraron la viabilidad del compuesto propuesto. El polvo de carnauba estaba presente en el material compuesto como carga de relleno. Se eligió la mejor formulación, 10%, para hacer una parábola de una cocina solar en concentración para producir alimentos para cocinar. El composite también se puede utilizar en la fabricación de paneles decorativos para el soporte de televisores, así como en la fabricación de muebles.
Citas
Ali, A., Shaker, K., Nawab, Y., Jabbar, M., Hussain, T., Militky, J., & Baheti, V. (2018). Hydrophobic treatment of natural fibers and their composites—A review. Journal of Industrial Textiles, 47(8), 2153–2183. https://doi.org/10.1177/1528083716654468.
Annamalai, M., & Ramasubbu, R. (2018). Optimizing the formulation Of E-glass fiber and cotton shell particles hybrid composites for their mechanical behavior by mixture design analysis. Materiali in Tehnologije, 52(2), 207–214. https://doi.org/10.17222/mit.2017.119
ASTM D3039/D3039M-17: Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM International, West Conshohocken, PA, (2017).
ASTM D7264/D7264M-15: Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials, ASTM International, West Conshohocken, PA, (2015).
ASTM D6110-18: Standard Test Method for Determining the Charpy Impact Resistance of Notched Specimens of Plastics, ASTM International, West Conshohocken, PA, (2018).
ASTM D792-13: Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement, ASTM International, West Conshohocken, PA, (2013).
ASTM D570-98: Standard Test Method for Water Absorption of Plastics, ASTM International, West Conshohocken, PA, (2010).
ASTM D5930-17: Standard Test Method for Thermal Conductivity of Plastics by Means of a Transient Line-Source Technique, ASTM International, West Conshohocken, PA, 2017.
ASTM D1435-13: Standard Practice for Outdoor Weathering of Plastics, ASTM International, West Conshohocken, PA, (2013).
ASTM E2550-17: Standard Test Method for Thermal Stability by Thermogravimetry, ASTM International, West Conshohocken, PA, (2017)
ASTM E1382-97: Standard Test Methods for Determining Average Grain Size Using Semiautomatic and Automatic Image Analysis, ASTM International, West Conshohocken, PA, (2015).
Batista, W. F. (2014). Sociobiodiversidade e resgate do saber popular da comunidade rural Novo Nilo-União/Piauí-Brasil. Universidade Federal do Piauí, Departamento de Desenvolvimento e Meio Ambiente, Teresina/PI.
Bodur, M. S., Englund, K., & Bakkal, M. (2017). Water absorption behavior and kinetics of glass fiber/waste cotton fabric hybrid composites. Journal of Applied Polymer Science, 134(47), 45506. https://doi.org/10.1002/app.45506
Carvalho, L. F. (2011). Tratamentos de fibras de carnaúba [Copernicia Prunífera (miller) h.E.Moore] para o desenvolvimento de compósito biodegradável com matriz de polihidroxibutirato. Tese de Doutorado, Universidade Federal do Rio Grande do Norte, Departamento de Engenharia de Materiais, Natal/RN.
Costa, D. S., Banna, W. R., Lima, L. S., Almeida, L. M., Santos, E. d., Lopes, C. E., & Fujiyama, R. T. (2013). COMPÓSITOS POLIMÉRICOS REFORÇADO POR FIBRAS DE CARNAÚBA (Copernica prunifera). 68º Congresso da ABM. São Paulo. doi:10.5151/2594-5327-23064
Costa, L. L. (2015). Obtenção e caracterização de um compósito a base de caulim e pó da palha de carnaúba como isolante térmico. Dissertação de Mestrado, Universidade Federal do Rio Grande do Norte, Departamento de Engenharia Mecânica, Natal/RN
Djeghader, D., & Redjel, B. (2019). Effect of water absorption on the Weibull distribution of fatigue test in jute-reinforced polyester composite materials. Advanced Composites Letters, 28, 096369351985383. https://doi.org/10.1177/0963693519853833
Dong, C. (2018). Review of natural fibre-reinforced hybrid composites. Journal of Reinforced Plastics and Composites, 37(5), 331–348. https://doi.org/10.1177/0731684417745368
Düşünceli, N., Akyüz, L., Şahin, N., & Duru, H. (2019). The effect of polyurethane and carnauba wax on the mechanical and physicochemical properties of acrylonitrile butadiene nitrile rubber coating working gloves. Journal of Elastomers & Plastics, 51(1), 36–51. https://doi.org/10.1177/0095244318768650
FIlho, C. A. (2013). Desenvolvimento de compósito a partir da piaçava para construção de uma parábola de fogão solar. Tese de Doutorado, Universidade Federal do Rio Grande do Norte, Departamento de Engenharia Mecânica, Natal/RN.
Freitas, M. M. (2011). Obtenção de álcoois de cadeia longa a partir da cera da carnaúba. Dissertação de Mestrado, Universidade Federal do Ceará, Departamento de Engenharia Química, Fortaleza/CE.
Gomes, J. W., De Souza, L. G. M., De Souza Filho, L. G. V. M., & Santos, N. R. (2015). Production and characterization of polymeric composite materials using MDF waste in powder and poliester terephthalic resin. Materials Research, 18, 25–29. https://doi.org/10.1590/1516-1439.338014
Gomes, J. W., Godoi, G. S., De Souza, L. G. M., & De Souza, L. G. V. M. (2017). Absorção de água e propriedades mecânicas de compósitos poliméricos utilizando resíduos de MDF. Polimeros, 27(spe), 48–55. https://doi.org/10.1590/0104-1428.1915
Junior, A. P. (2016). Viabilidade de uso de um fogão solar com quatro focos para cocção de alimentos. Dissertação de Mestrado do PPGEM, Universidade Federal do Rio Grande do Norte, Departamento de Engenharia Mecânica , Natal/RN.
Khurshid, M. F., Hengstermann, M., Hasan, M. M. B., Abdkader, A., & Cherif, C. (2020). Recent developments in the processing of waste carbon fibre for thermoplastic composites – A review. Journal of Composite Materials, 54(14), 1925–1944. https://doi.org/10.1177/0021998319886043
Koyuncu, M., Karahan, M., Karahan, N., Shaker, K., & Nawab, Y. (2016). Static and dynamic mechanical properties of cotton/epoxy green composites. Fibres and Textiles in Eastern Europe, 24(4), 105–111. https://doi.org/10.5604/12303666.1201139
Marques, J. S. (2012). Uso do pó da palha de carnaúba em compósitos de quitosana . Dissertação de Mestrado, Universidade Federal do Rio Grande do Norte, Departamento de Engenharia Química, Natal.
Marques, J. S. (2016). Obtenção e caracterização de um compósito polimérico de matriz poliéster e reforço/carga de tecido plano de algodão. Tese de Doutorado, Universidade Federal do Rio Grande do Norte, Departamento de Engenharia Mecânica, Natal/RN.
Melo, J. D. D., Carvalho, L. F. M., Medeiros, A. M., Souto, C. R. O., & Paskocimas, C. A. (2012). A biodegradable composite material based on polyhydroxybutyrate (PHB) and carnauba fibers. Composites Part B: Engineering, 43(7), 2827–2835. https://doi.org/10.1016/j.compositesb.2012.04.046
Oliveira, F. S., Mendes, J. U. L., Costa, L. L. L., & Santos, L. M. P. (2014). Caracterização De Fibras Da Palha Da Carnaúba Para Aplicação Em Compósitos De Isolação Térmica. CBECIMAT-Congresso Brasileiro de Engenharia e Ciência dos Materiais.
Rodríguez Millán, M., Moreno, C. E., Marco, M., Santiuste, C., & Miguélez, H. (2016). Numerical analysis of the ballistic behaviour of Kevlar® composite under impact of double-nosed stepped cylindrical projectiles. Journal of Reinforced Plastics and Composites, 35(2), 124–137. https://doi.org/10.1177/0731684415608004
Saltan, F., & Akat, H. (2019). Polyhedral oligomeric silsesquioxane-based aliphatic polyester composites: Synthesis, characterization, and investigation of thermal properties. Journal of Thermoplastic Composite Materials, 089270571987520. https://doi.org/10.1177/0892705719875208
Sathishkumar, T., Naveen, J., Navaneethakrishnan, P., Satheeshkumar, S., & Rajini, N. (2017). Characterization of sisal/cotton fibre woven mat reinforced polymer hybrid composites. Journal of Industrial Textiles, 47(4), 429–452. https://doi.org/10.1177/1528083716648764
Singh, J., Kumar, M., Kumar, S., & Mohapatra, S. K. (2017, March 24). Properties of Glass-Fiber Hybrid Composites: A Review. Polymer - Plastics Technology and Engineering, Vol. 56, 455–469. https://doi.org/10.1080/03602559.2016.1233271
Souza, L. G. (2018). Efeito da hibridização de um compósito com matriz de resina poliéster e carga de tecido de fibra de algodão com uma carga de tecido de fibra de vidro tipo E a um compósito de resina poliéster e tecido de fibra de algodão. Tese de Doutorado, Universidade Federal do Rio Grande do Norte, Programa de Pós-Graduação em Engenharia Mecânica PPGEM, Natal/RN.
Thakur, V. K., Thakur, M. K., & Gupta, R. K. (2014, April). Review: Raw Natural Fiber-Based Polymer Composites. International Journal of Polymer Analysis and Characterization, Vol. 19, pp. 256–271. https://doi.org/10.1080/1023666X.2014.880016
Zaini, E. S., Azaman, M. D., Jamali, M. S., & Ismail, K. A. (2020). Synthesis and characterization of natural fiber reinforced polymer composites as core for honeycomb core structure: A review. Journal of Sandwich Structures and Materials, 22(3), 525–550. https://doi.org/10.1177/1099636218758589
Zhu, J., Zhu, H., Njuguna, J., & Abhyankar, H. (2013). Recent Development of Flax Fibres and Their Reinforced Composites Based on Different Polymeric Matrices. Materials, 6(11), 5171–5198. https://doi.org/10.3390/ma6115171.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Luiz Guilherme Meira de Souza; Ricardo Fernandes de Souza; Raimundo Vicente Pereira Neto

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.