Inhibitory activity of acetylcholinesterase by Pterodon pubescens (Benth.) Benth. (Leguminosae-Papilionoideae) leaf extracts

Authors

DOI:

https://doi.org/10.33448/rsd-v9i9.7739

Keywords:

Phenolic compounds; Flavonoids; Acetycholinesterase; Brazilian Cerrado.

Abstract

Pterodon pubescens (Benth.) Benth  is native species from the Brazilian Cerrado, popularly known as “sucupira-branca,” and rich in bioactive metabolites. This study aimed to assess the inhibitory activity of the enzyme acetylcholinesterase by leaf extracts of P. pubescens Benth. Phenolic constituents and flavonoids were analyzed by LC-DAD and LCMS. The qualitative and quantitative enzymatic inhibitory profile was performed by 96-well microplate in ELISA reader. The statistical analysis was reached with a significance limit of p < 0.05 applied by the Tukey’s test. Bioactive components detected were terpenoids, phenolic acids (gallic acid, ferulic acid, and rosmarinic acid), and flavonoids (kaempferol, luteolin, apigenin, rutin, and quercetin). There were no significant differences of inhibition between the crude methanolic and ethyl acetate extracts and between the hydroalcoholic and ethyl acetate phases at the concentration of 80 µg mL-1. The phytochemical profile in LCMS are related to the acetylcholinesterase inhibitory effect. This species has an importance for future in vivo studies, purification, and isolation of molecules with a possible biopesticidal effect.

References

Ado, M. A., Abas, F., Ismail, I. S., Mghazali, H., & Shaari, K. (2014) Chemical profile and antiacetylcholinesterase, antityrosinase, antioxidant and α-glucosidase inhibitory activity of Cynometra cauliflora L. leaves. Journal of the Science of Food and Agriculture, 95(3), 635-642. DOI: 10.1002/jsfa.6832

Akomolafe, S. F., Oboh, G., Oyeleye, S. I., & Boligon, A. A. (2016). Aqueous extract from Ficus capensis leaves inhibits key enzymes linked to erectile dysfunction and prevent oxidative stress in rats’ penile tissue. NFS Journal, 4,15-21. https://doi.org/10.1016/j.nfs.2016.06.001

Basha, S. A., Maheswaraiah, A., & Rao, U. J. S. P. (2017). Antioxidant profile, acetylcholinesterase inhibition and platelet aggregation of polyphenols and proteins from germinating green gram (Vigna radiata). International Journal of Food Properties, 20(1), 1-33. https://doi.org/10.1080/10942912.2017.1325899

Bustamante, K. G. L., Lima, A. D. F., Soares, M. L., Fiuza, T. S., Tresvenzol, L. M. F., Bara, M. T. F., Pimenta, F. C., & Paula, J. R. (2010). Avaliação da atividade antimicrobiana do extrato etanólico bruto da casca da sucupira branca (Pterodon emarginatus Vogel) - Fabaceae. Revista Brasileira de Plantas Medicinais, 12(3), 341-345. https://doi.org/10.1590/S1516-05722010000300012

Cespedes, C. L., Balbontin, C., Avila, J. G., Dominguez, M., Alarcon, J., Paz, C., Burgos, V., Ortiz, L., Penaloza-Castro, I., Seigler, D. S., & Kubo, I. (2017). Inhibition on cholinesterase and tyrosinase by alkaloids and phenolics from Aristotelia chilensis leaves. Food and Chemical Toxicology, 109(2), 1-12. doi: 10.1016/j.fct.2017.05.009

Ceylan, R., Katani, J., Zengin, G., Mati, S., Aktumsek, A., Boroja, T., Stani, S., Mihailovi, V., Guler, G. O., Boga, M., & Yilmaz, M. A. (2016). Chemical and biological fingerprints of two Fabaceae species (Cytisopsis dorycniifolia and Ebenus hirsuta): Are they novel sources of natural agents for pharmaceutical and food formulations? Industrial Crops and Products, 84, 254-262. https://doi.org/10.1016/j.indcrop.2016.02.019

Coelho, L. P., Reis, P. A., De astro, F. L., Gayer, C. R. M., Lopes, C. S., Da Costa e Silva, M. C., Sabino, K. C. C., Todeschini, A. R. & Coelho, M. G. P. (2005). Antinociceptive properties of ethanolic extract and fractions of Pterodon pubescens Benth. seeds. Journal of Ethnopharmacology, 98, 109-116.

Conceição, R. S., Carneiro, M. M. A. A., Reis, I. M. A., Branco, A., Vieira, I. J. C., Braz-Filho, R., & Botura, M. B. (2016). In vitro acaricide activity of Ocotea aciphylla (Nees) Mez. (Lauraceae) extracts and identification of the compounds from the active fractions Actions. Ticks and Tick-Borne Diseases, 8(2), 275-282. doi: 10.1016/j.ttbdis.2016.11.013

Costa, P., Gonçalves, S., Valentão, P., Andrade, P. B., & Romano, A. (2013). Accumulation of phenolic compounds in in vitro cultures and wild plants of Lavandula viridis L’Hér and their antioxidant and anti-cholinesterase potential. Food and Chemical Toxicology, 57, 69-74. doi: 10.1016/j.fct.2013.03.00.

Ekin, H. N., Gokbulut, A., Aydin, Z. U., Donmez, A. A., & Orhan, I. E. (2016). Insight into anticholinesterase and antioxidant potential of thirty-four Rosaceae samples and phenolic characterization of the active extracts by HPLC. Industrial Crops and Products, 91, 104-113. doi: 10.1016/j.indcrop.2016.06.029

Forsberg, A., & Puu, G. (1984). Kinetics for the inhibition of acetylcholinesterase from the electric eel by some organophosphates and carbamates. European Journal of Biochemistry, 140(1), 153-156. doi: 10.1111/j.1432-1033.1984.tb08079.x

Gasca, C. A., Castillo, W. O., Takahashi, C. S., Fagg, C. W., Magalhães, P. O., Fonseca-Bazzo, Y. M., & Silveira, D. (2017). Assessment of anticholinesterase activity and cytotoxicity of cagaita (Eugenia dysenterica) leaves. Food and Chemical Toxicology, 109(2), 996-1002. doi: 10.1016/j.fct.2017.02.032

Gocer, H., Topal, F., Topal, M., Küçük, M., Teke, D., Gülçin, İ., Alwasel, S. H., & Supuran, C. T. (2016). Acetylcholinesterase and carbonic anhydrase isoenzymes I and II inhibition profiles of taxifolin. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(3), 441-447. doi: 10.3109/14756366.2015.1036051.

Hanganu, D., Olah, N. K., Benedec, D., Mocan, A., Crisan, G., Vlase, L., Popica, I., & Oniga, I. (2016). Comparative polyphenolic content and antioxidant activities of Genista tinctoria L. and Genistella sagittalis (L.) Gams (Fabaceae). Pakistan Journal of Pharmaceutical Sciences, 29(1), 301-307.

Labed. A., Ferhat, M., Labed-Zouad, I., Kaplaner, E., Zerizer, S., Voutquenne-Nazabadioko, L., Alabdul Magid, A., Semra, Z., Kabouche, A., Kabouche, Z., & Öztürk, M. (2016). Compounds from the pods of Astragalus armatus with antioxidant, anticholinesterase, antibacterial and phagocytic activities. Pharmaceutical Biology, 54(12), 3026-3032. https://doi.org/10.1080/ 13880209.2016.1200632

Lemos, M. R. B., Siqueira, E. M. A., Arruda, S. F., & Zambiazi, R. C. (2012). The effect of roasting on the phenolic compounds and antioxidant potential of baru nuts [Dipteryx alata Vog.]. Food Research International, 48(2), 592-597. doi: 10.1016/j.foodres.2012.05.027

López, M. D., & Pascual-Villalobos, M. J. (2010). Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Industrial Crops and Products, 31(2), 284-288. doi: 10.1016/j.indcrop.2009.11.005

Ma, X., Zheng, C., Changling, H., Rahman, K., & Qin, L. (2011). The genus Desmodium (Fabaceae) – traditional uses in Chinese medicine, phytochemistry and pharmacology. Journal of Ethnopharmacology, 138(2), 314-332. doi: 10.1016/j.jep.2011.09.053.

Marston, A., Kissling, J., & Hostettmann, K. A. (2002). A rapid CCD bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochemical Analysis, 13(1), 51-54.

Menezes Filho, A. C. P., Sousa, W. C., Castro, C. F. S., & De Souza, L. F. (2019). Composição química do óleo essencial das flores de Myrcia guianensis (Aubl.) DC. Revista Cubana de Plantas Medicinales, 24(4), e892.

Menezes Filho, A. C. P., Romão, L. T. G., Dos Reis, E. B., Malaquias, K. S., Castro, C. F. S., Marcionilio, S. M. L. O., & Oliveira, M. S. (2020). Chromatographic analysis and physicochemical evaluation of the essential oil of Bauhinia monandra Kurz flowers. Research, Society and Development, 9(8), 454985979.

Menezes Filho, A. C. P., Oliveira Filho, J. G., Christofoli, M., & Castro, C. F. S. (2019). Atividade antioxidante e compostos bioativos em espécies de um fragmento de Cerrado goiano tipo cerradão. Colloquium Agrariae, 15(1), 1-8.

Miranda, M. L. D., Garceza, F. R., Abotb, A. R., & Garceza, W. S. (2014). Sesquiterpenes and other constituents from leaves of Pterodon pubescens Benth. (Leguminosae). Química Nova, 37(3), 473-476. doi: /10.5935/0100-4042.20140065

Moniruzzaman, M. M., Asaduzzaman, M., Hossain, M. S., Sarker, J., Rahman, S. M. A., Rashid, M., & Rahman, M. M. (2015). In vitro antioxidant and cholinesterase inhibitory activities of methanolic fruit extract of Phyllanthus acidus. BMC Complementary and Alternative Medicine, 15, 403-413. doi: 10.1186/s12906-015-0930-y

Muthukrishnan, S., Palanisamy, S., Subramanian, S., Selvaraj, S., Mari, K. R., & Kuppulingam, R. (2016). Phytochemical Profile of Erythrina variegata by Using High-Performance Liquid Chromatography and Gas Chromatography-Mass Spectroscopy Analyses. Journal of Acupuncture and Meridian Studies, 9(4), 207-212. doi: 10.1016/j.jams.2016.06.001

Nag, G., & De Bratati. (2011) Acetylcholinesterase inhibitory activity of Terminalia chebula, Terminalia bellerica and Emblica officinalis and some phenolic compounds. International Journal of Pharmacy and Pharmaceutical Sciences, 3(3), 121-124.

Negri, G., Mattei, R., & Mendes, F. R. (2014). Antinociceptive activity of the HPLC- and MS-standardized hydroethanolic extract of Pterodon emarginatus Vogel leaves. Phytomedicine, 21(8-9), 1062-1069. doi: 10.1016/j.phymed.2014.04.009.

Oliveira, L. M. N., Silva, L. M. R., Lima, A. C. S., Almeida, R. R., Ricardo, N. M. P. S., Figueiredo, E. A. T., & Figueiredo, R. W. (2020). Caracterização de rutina, compostos fenólicos e capacidade antioxidante de polpas e subprodutos de frutas tropicais. Research, Society and Development, 9(4), e42942812. https://doi.org/10.33448/rsd-v9i4.2812

Prasad, N. R., Anandi, C., Balasubramanian, S., & Pugalendi, K. V. (2004). Antidermatophytic activity of extracts from Psoralea corylifolia (Fabaceae) correlated with the presence of a flavonoid compound. Journal of Ethnopharmacology, 91(1), 21-24. https://doi.org/10.1016/j.jep.2003.11.010

Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. Metodologia da Pesquisa Científica. UAB/NTE/UFSM, Universidade Federal de Santa Maria, Santa Maria-RS, 2018. Recuperado de https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Com putacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Sgarbossa, A., Giacomazza, D., & Di Carlo, M. (2015). Ferulic Acid: A hope for Alzheimer’s disease therapy from plants. Nutrients, 7(7), 5764-5782. doi: 10.3390/nu7075246

Shahwar, D., Rehman, S. U., & Raza, M. A. (2010). Acetyl cholinesterase inhibition potential and antioxidant activities of ferulic acid isolated from Impatiens bicolor Linn. Journal of Medicine Plant Research, 4, 260-266.

Sulaiman, C. T., George, S., Goplakrishnan, V. K., & Balachandran, I. (2013). Chromatographic Studies and in vitro screening for acetyl cholinesterase inhibition and antioxidant activity of three Acacia species from South India. Analytical Chemistry Letters 3, 111-118. doi: 10.1080/22297928.2013.806405

Tangsaengvit, N., Kitphati, W., Tadtong, S., Bunyapraphatsara, N., & Nukoolkarn, V. (2013). Neurite outgrowth and neuroprotective effects of quercetin from Caesalpinia mimosoides Lamk. on cultured P19-derived neurons. Evidence-Based Complementary and Alternative Medicine, 2013, 1-7. doi: 10.1155/2013/838051

Tavares, L., Fortalezas, S., Tyagi, M., Barata, D., Serra, A. T., Duarte, C. M., Duarte, R. O., Feliciano, R. P., Bronze, M. R., Espírito-Santo, M. D., Ferreira, R. B., & Santos, C. N. (2012). Bioactive compounds from endemic plants of Southwest Portugal: Inhibition of acetylcholinesterase and radical scavenging activities. Pharmaceutical Biology, 50(2), 239-246. doi: 10.3109/13880209.2011.596209.

Vinutha, B., Prashanth, D., Salma, K., Sreeja, S. L., Pratiti, D., Padmaja, R., Radhika, S., Amit, A., Venkateshwarlu, K., & Deepak, M. (2007). Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. Journal of Ethnopharmacology, 109(2), 359-363.

Vladimir-Knežević, S., Blažeković, B., Kindl, M., Vladić, J., Lower-Nedza, A. D., Brantner, A. H. (2014). Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae Family. Molecules, 19(1), 767-782. doi: 10.3390/molecules19010767.

Zengin, G., Sarikurkcu, C., Aktumsek, A., Ceylan, R., & Ceylan, O. (2014). A comprehensive study on phytochemical characterization of Haplophyllum myrtifolium Boiss. endemic to Turkey and its inhibitory potential against key enzymes involved in Alzheimer, skin diseases and type II diabetes. Industrial Crops and Products, 53, 244-251. doi: 10.1016/j.indcrop.2013.12.04.

Downloads

Published

03/09/2020

How to Cite

Porfiro, C. A. ., Silva, L. S. da ., Pereira, P. S., Rodrigues, A. R. dos S., Silva, F. G., & Nascimento, A. L. . (2020). Inhibitory activity of acetylcholinesterase by Pterodon pubescens (Benth.) Benth. (Leguminosae-Papilionoideae) leaf extracts. Research, Society and Development, 9(9), e689997739. https://doi.org/10.33448/rsd-v9i9.7739

Issue

Section

Agrarian and Biological Sciences