Anti-inflamatory response of poultry challenged with LPS of Escherichia coli

Authors

DOI:

https://doi.org/10.33448/rsd-v9i9.7823

Keywords:

Escherichia coli LPS; Interleukin-10; IL-10.

Abstract

To evaluate the anti-inflammatory response of poultry, body weight (BW), body weight loss (BWL), cloacal temperature (CT) and expression of interleukin-10 (IL-10) after LPS application were calculated. A total of 19-day-old male broilers were used. At 17 days, the broilers were weighed and distributed in 12 metal cages with 1 animal per experimental unit. Intraperitoneal application of LPS was realized through 1 ml/kg of body weight at 19 days of age at time zero. For each treatment, that is, each time after the application of the LPS, the temperature of the poultry was measured. Afterwards, this chicken was weighed to determine body weight and body weight loss. Finally, the broiler was euthanized by cervical dislocation and collected their spleens for analysis of IL-10 mRNA expression. The analysis of the results obtained during the performance of this work concludes that the application of LPS of Escherichia coli directly interferes in the body weight loss of the animals (Y = - 0.09617 - 1.54780 x + 0.19107 x2) in 3.2307 % after 4.05 hours of application, and which directly interferes with the Gene Expression of the Interleukin-10 (Y = 1.33367 + 3.23013 x - 0.31733 x2), having its peak of expession after 5,0895 hours of application with a concentration of 9,53364 A.U..

References

Albino, L. F. T., et al. (2006). Uso de prebióticos à base de mananoligossacarídeo em rações para frango de corte. Revista Brasileira de Zootecnia. Viçosa 35(3), 742-749. Doi: https://doi.org/10.1590/S1516-35982006000300015.

Arendt, M., Elissa, J., Schmidt, N., Michael, E., Potter, N., Cook, M., Knoll, L., Arendt, D.M. (2019). Investigating the role of interleukin 10 on Eimeria intestinal pathogenesis in broiler chickens. Vet. Immunol. Immunop., 218. Doi: https://doi.org/10.1016/j.vetimm.2019.109934.

Beterchini, A.G. (2012). Nutrição de monogástricos. Editora UFLA. Lavras, MG. Acesso em 03 de Setembro 2020. Disponível em https://www.bdpa.cnptia.embrapa.br/consulta/busca?b=ad&biblioteca=vazio&busca=autoria:%22BERTECHINI,%20A.%20G.%22.

Beutler, B. & Rietschiel, E. T. (2003). Innate immune sensing and its roots: the story of endotoxin. Nature reviews Immunology, 3(2), 169-176. Doi: https://doi.org/10.1038/nri1004.

Chen, Y., Cheng, Y., Wang, W., Wang, A, Zhou, Y. (2020). Protective effects of dietary supplementation with a silicate clay mineral (palygorskite) in lipopolysaccharide-challenged broiler chickens at an early age. Anim. Feed Sci. Technol., 263, 114459. Doi: https://doi.org/ 10.1016/j.anifeedsci.2020.114459.

Chen, Y., Zhang, H., Cheng, Y., Li, Y., Wen, C., & Zhou, Y. (2018). Dietary l-threonine supplementation attenuates lipopolysaccharide-induced inflammatory responses and intestinal barrier damage of broiler chickens at an early age. British Journal of Nutrition, 119(11), 1254–1262. Doi: https://doi.org/10.1017/S0007114518000740.

Cromwell, G.L. (1991). Antimicrobial agents. In: MILLER, E.R. et al. Swine nutrition. Boston: Butterworth-Heinemann, 297-314.

Cromwell, G.L. (2012). Feed supplements: Antibiotics. In: Pond, W.G; Bell, A.W. Enciclopedia of animal Science.

De Boever, S., Beyaert, R., Vandemaele, F., Baert, K., Duchateau, L., Goddeeris, B., De Backer, P. & Croubels, S. (2008). The influence of age and repeated lipopolysaccharide administration on body temperature and the concentration of interleukin-6 and IgM antibodies against lipopolysaccharide in broiler chickens. Avian Pathology, 37(1), 39-44. Doi: https://doi.org/10.1080/03079450701784875.

De Boever, S., Croubels, S., Meyer, E., Sys, S., Beyaert, R., Ducatelle, R. & De Backer, P. (2009). Characterization of an intravenous lipopolysaccharide inflammation model in broiler chickens. Avian Pathology, 38(5), 403-411. Doi: https://doi.org/10.1080/03079450903190871.

Gao, J., Zhang, H. J., Yu, S. H., Wu, S. G., Yoon, I., Quigley, J., Qi, G. H., et al. (2008). Effects of Yeast Culture in Broiler Diets on Performance and Immunomodulatory Functions. Poultry Science, 87(7), 1377–1384. Doi: https://doi.org/10.3382/ps.2007-00418.

Li, Y., Zhang, H., Chen, Y. P., Yang, M. X., Zhang, L. L., Lu, Z. X., et al. (2015). Bacillus amylo liquefaciens supplementation alleviates immunological stress in lipopolysaccharide-challenged broilers at early age. Poultry Science, 94(7), 1504–1511. Doi: https://doi.org/10.3382/ps/pev124.

Linker-Israeli, M., Elstner, E., Klinenberg, J. R., Wallace, D. J., & Koeffler, H. P. (2001). Vitamin D3 and its synthetic analogs inhibit the spontaneous in vitro immunoglobulin production by SLE-derived PBMC. Clinical immunology, 99(1), 82-93. Doi: https://doi.org/10.1006/clim.2000.4998.

Linker-Israeli, M., Honda, M., Nand, R., Mandyan, R., Mengesha, E., Wallace, D. J., Metzger, A., Behavier, B., & Klinenberg, J. R. (1999). Exogenous IL-10 and IL-4 down-regulate IL-6 production by SLE-derived PBMC. Clin. Immunol., 91(1), 6–16. Doi: https://doi.org/10.1006/clim.1998.4680.

Lorençon, L., Nunes, R. V., Pozza, P. C., Pozza, M. S. dos S., Appelt, M. D. & Silva, W. T. M. D. (2007). Utilização de promotores de crescimento para frangos de corte em rações fareladas e peletizadas. Acta Scientiarum. Animal Sciences, 29(2). Doi: https://doi.org/10.4025/actascianimsci.v29i2.219.

Niewold, T. A., et al. (2007). The nonantibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis. Poult. Sci., 86, 605–609. Doi: https://doi.org/10.1093/ps/86.4.605.

NRC - National Research Council, Nutrient requirements of poultry, Washington. National Academy Press, 9th revised ed., 1994.

Paz, A. S., Abrey, R. D., Costa, M. C. M. (2010). Aditivos promotores de crescimento na alimentação de frangos de corte. Revista brasileira de saúde e produção animal, 11(2), 395-402.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Acesso em: 03 de Setembro 2020. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_MetodologiaPesquisa-Cientifica.pdf?sequence=1.

Tan, J., Liu, S., Guo, Y., Applegate, T. J., & Eicher, S. D. (2013). Dietary l-arginine supplementation attenuates lipopolysaccharide-induced inflammatory response in broiler chickens. British Journal of Nutrition, 111(08), 1394–1404. Doi: https://doi.org/ 10.1017/s0007114513003863.

Wu, Q. J., Wang, Y. Q., & Qi, Y. X. (2016). Influence of procyanidin supplementation on the immune responses of broilers challenged with lipopolysaccharide. Animal Science Journal, 88(7), 983–990. Doi: https://doi.org/10.1111/asj.12729.

Wu, Q. J., Zhou, Y. M., Wu, Y. N., Zhang, L. L., & Wang, T. (2013). The effects of natural and modified clinoptilolite on intestinal barrier function and immune response to LPS in broiler chickens. Veterinary Immunology and Immunopathology, 153(1-2), 70–76. Doi: https://doi.org/10.1016/j.vetimm.2013.02.006.

Yang, X., Guo, Y., He, X., Yuan J., Yang, Y., Wang, Z. (2008). Growth performance and immune responses in chickens after challenge with lipopolysaccharide and modulation by dietary different oils. Animal, 2, 216-223. Doi: https://doi.org/10.1017/S1751731107001188.

Zhang, H.; Chen, Y., Chen, Y., Li, Y., Jia, P., Ji, S., Zhou, Y., Wang, T. (2019). Dietary pterostilbene supplementation attenuates intestinal damage and immunological stress of broiler chickens challenged with lipopolysaccharide. J. Anim. Sci., 98. Doi: https://doi.org/10.1093/jas/skz373.

Published

05/09/2020

How to Cite

Borges, S. O., Nunes, R. A., Vale, B. G. do ., Almeida, B. F. de ., Diana, T. F. ., Bernardes, R. D. ., & Calderano, A. A. . (2020). Anti-inflamatory response of poultry challenged with LPS of Escherichia coli. Research, Society and Development, 9(9), e732997823. https://doi.org/10.33448/rsd-v9i9.7823

Issue

Section

Agrarian and Biological Sciences