Evaluation of the efficacy of defluoration systems with absorption materials for water treatment in endemic fluorose areas: an integrative review

Authors

DOI:

https://doi.org/10.33448/rsd-v9i9.7825

Keywords:

Fluorine; Defluoridation; Adsorption.

Abstract

Fluoride is the 13th most abundant element in the world, with drinking water being the biggest contributor to its intake. Exposure to fluoride - in excessive conditions - causes toxicity and can manifest as dental fluorosis. Thus, defluoridation is a physical-chemical mechanism that reduces the concentration of fluoride in the water, as a way of preventing fluorosis. Therefore, the study aims to evaluate the efficacy of the systems of defluoridation with adsorption materials in endemic areas of fluorosis. For that, the utilization used, if of an integrative literature review, consisting of the steps of: elaboration of the guiding question, data collection, evaluation, analysis and interpretation of the presented data and presentation of the results. According to what was found, most of the studies verified the possibility of using bauxite and other materials for the water defluoridation, reaching the indication of the fluoride concentration recommended by the Consolidation Ordinance / MS nº5 / 2017, Annex XX. One of the most economical processes for removing fluoride from water for human consumption is adsorption, which also provides benefits for efficiency. Therefore, it is concluded that defluoridation systems for water treatment in endemic areas of fluorosis consist of highly effective elements for reducing the incidence of fluorosis disease.

References

Chatterjee, S., & Murkherjee, M. (2018). Defluoridation using novel chemically treated carbonized bone meal: batch and dynamic performance with scale-up studies. Environmental Science and Pollution Research, 25(18): 18161-18178. doi: 10.1007 / s11356-018-2025-z.

Cherukumilli, K.; Delaire, C.; Amorose, S., & Gadgil, A. J. (2017). Factors Governing the Performance of Bauxite for Fluoride Remediation of Groundwater. Environ. Sci. Technol., 51(4): 2321-2328. doi: 10.1021/acs.est.6b04601.

Cherukumilli, A.K.K., et al. (2018). Effective Remediation of Groundwater Fluoride with Inexpensively Processed Indian Bauxite. Environ. Sci. Technol., 52(8): 4711-18. doi: 10.1021/acs.est.7b05539.

Ferrreira, J. E. V.; Carvalho, M. M. S. G.; Sampaio, F. C., & Leite, C. N. (2016). Mapeamento dos níveis de flúor e ph em águas da zona rural do município de Belém-PB. Revista A Barriguda, 6(1): 112-124.

George, A. M., & Tembhurkar, A. R. (2019). Optimization of defluoridation using Ficus benghalensis leaf biosorbent through Taguchi’s method. Water Environment Research, 31: 340-350. doi: 10.1002/wer.1051.

Ghosal, P. S., & Gupta, A. K. (2018). Sorptive equilibrium profile of fluoride onto aluminum olivine [(FexMg1−x)2SiO4] composite (AOC): Physicochemical insights and isotherm modeling by non-linear least squares regression and a novel neural-network-based method. Journal of Environmental Science and Health, 0(0): 1-13. doi: 10.1080/10934529.2018.1474590.

Kumari, U.; Behera, S. K., & Meikap, B. C. (2018). Defluoridation of synthetic and industrial wastewater by using acidic activated alumina adsorbent: characterization and optimization by response surface methodology. Journal of Environmental Science and Health, 54: 79-88. doi: 10.1080/10934529.2018.1521674.

Kurdi, M. S. (2016). Chronicfluorosis: The diseaseand its anaestheticimplications. Indian J Anaesth., 60(3): 157-162. doi: 10.4103/0019-5049.177867.

Larsen, M. J.; Pearce, E. L. F., & Ravnholt, G. (1994). The effectiveness of bone char in the defluoridation of water in relation to its crystallinity, carbon content and dissolution pattern. Archs oral Biol, 39(9): 807-816. doi: 10.1016/0003-9969(94)90010-8.

Leite, C. N., & Ferreira, J. E. V. (2019). Mapeamento do flúor na água de consumo humano e avaliação do risco de fluorose dentária na zona rural de municípios do interior da Paraíba: relato de experiência. Experiências Multiprofissionais- USP, 45-50.

Liu, R. P. (2019). Principle and techniques for fluoride pollution control in drinking water. Ying Yong Sheng Tai Xue Bao, 30(1): 30-36. doi: 10.13287/j.1001-9332.201901.005.

Patil, M. M., Lakhkar, B. B., & Patil, S. S. (2018). Curse of Fluorosis. The Indian Journal of Pediatrics, 85(5): 375-383. doi: 10.1007/s12098-017-2574-z.

Ranasinghe, N. et al. (2019). The heterogeneous nature of water well fluoride levels in Sri Lanka: An opportunity to mitigate the dental fluorosis. Community Dent Oral Epidemiol., 47(3): 236-242. doi: 10.1111/cdoe.12449.

Salifu, A., et al. (2016). Defluoridation of groundwater using aluminum-coated bauxite: Optimization of synthesis process conditions and equilibrium study. Journal of Environmental Management, 181: 108-117. doi: 10.1016/j.jenvman.2016.06.011.

Sankannavar, R., & Chaudhari, S. (2019). An imperative approach for fluorosis mitigation: Amending aqueous calcium to suppress hydroxyapatite dissolution in defluoridation. Journal of Environmental Management, 245: 230-237. doi: 10.1016/j.jenvman.2019.05.088.

Sharma, S., et al. (2019). Defluoridation of water using autochthonous bacterial isolates. Environ Monit Assess., 191(12): 781. doi: 10.1007/s10661-019-7928-8.

Srivastava, S., & Flora, S. J. S. (2020). Fluoride in Drinking Water and Skeletal Fluorosis: a Review of the Global Impact. Current Environmental Health Reports, 7(2): 140-146. doi: 10.1007/s40572-020-00270-9.

Stefanenko, I. V., Semenova, E. A., Klimenko, O. V., & Bondarenko, V. A. (2018). Fundamentals of Methodology of Development of the Technical Theory of Natural and Technical Systems in Use of Water Resources. Applied Mechanics and Materials, 875: 141-144. doi: 10.4028/www.scientific.net/AMM.875.141.

Unde, M. P.; Patil, R. U., & Dastoor, P. P. (2018). The Untold Story of Fluoridation: Revisiting the Changing Perspectives. Indian J Occup Environ Med., 22(3): 121-127. doi: 10.4103/ijoem.IJOEM_124_18.

Yadav, K. K. et al. (2018). A review of emerging adsorbents and current demand for defluoridation of water: Bright future in water sustainability. Environment International, 111: 80-108. doi: 10.1016/j.envint.2017.11.014.

Yadav, K. K. et al. (2019). Fluoride contamination, health problems and remediation methods in Asian groundwater: A comprehensive review. Ecotoxicology and Environmental Safety, 182: 109362. doi: 10.1016/j.ecoenv.2019.06.045.

Published

06/09/2020

How to Cite

Batista, T. R. de M. ., Leal, T. da R. B. ., Leal, T. M. da R. B. ., Silva, M. L. A. da, Veríssimo, M. H. G. ., Lima, R. R. de ., Carvalho, M. M. S. G. de ., & Sampaio, F. C. . (2020). Evaluation of the efficacy of defluoration systems with absorption materials for water treatment in endemic fluorose areas: an integrative review. Research, Society and Development, 9(9), e748997825. https://doi.org/10.33448/rsd-v9i9.7825

Issue

Section

Health Sciences