Reduction of antinutrients and maintenance of bioactive compounds in flour from agro-industrial residue of acerola (Malpighia emarginata D.C.)

Authors

DOI:

https://doi.org/10.33448/rsd-v9i9.8054

Keywords:

Malpighia emarginata; Saponin; Phytates; Bioactive Compounds.

Abstract

This study was aimed at analyzing the reduction of antinutrients, preserving apparent phenolic compounds in acerola flour residue by employing drying techniques. The optimal drying conditions were then determined in the wet residue, analyzing antinutrient concentration and apparent phenolic compounds in the residue and subsequently in the acerola flour. The physicochemical characterization of the flour was carried out, determining its antioxidant activity, thereby assessing the impact of the drying process on the composition of volatile compounds. The optimal drying conditions were found for a temperature of 65ºC for 120 min, reducing water activity by 0.3 and moisture content by 13.89%, which are considered adequate conditions for flours. Carbohydrate content represented 68.72 g/100g, while proteins represented 12.55 g/100g of the centesimal composition of the flour. Significant reductions (p<0.5) of antinutrients were observed in saponins (35.9%), followed by phytates (32.8%) and condensed tannins (11.52%). Losses of 18.7% of apparent phenolic compounds were also observed. For volatile compounds, a significant loss of esters with a significant increase in alcohol content was noticed. Thermal processing reduced aroma complexity, but maintained important bioactive compounds, such as linalool and caryophyllene. In this regard, taking into account the results of the present study, the agro-industrial residue of acerola proved to be an alternative source of antioxidants with a reduced antinutritional impact and may be incorporated as an ingredient in the formulation of new food products. Moreover, this agro-industrial residue reduces the environmental impact caused by the fruit pulp processing industry.

References

Abud, A. K. S., & Narain, N. (2018). Characterization and alternatives to use acerola residue. Acta Horticulturae, 1198 (24), p.145-154. doi.org/10.17660/ActaHortic.2018.1198.24

Akande, K. E., Doma, U. D., Agu, H. O., & Adamu, H. M. (2010). Major Antinutrients Found in Plant Protein Sources: Their Effect on Nutrition. Pakistan Journal of Nutrition, 9(8), p.827-832. doi.org/10.3923/pjn.2010.827.832

AOAC. (1995). Official methods of analysis. (Patricia Cunniff, Ed.) (16th ed.). Washington, DC: Association of official analytical chemists.

Belitz H-D, Grosch W., Schieberle P. (2004) Food Chemistry, (3rd revised ed). Berlin, Heidelberg, New York: Springer.

Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: tre FRAP assay. Analytical Biochemistry, 239 (1), p.70–76.

Boroski, M., Visentainer, J. V., Cottica, S. M., & de Morais, D. R. (2015). Antioxidantes: princípios e métodos analíticos (1st ed.). Curitiba, PR: Appris Ltda.

BRASIL. (2007). Ministério da Agricultura e Abastecimento. Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas pela Captura do Radical Livre ABTS +. Comunicado Técnico 128. Fortaleza, CE.

BRASIL & Agência Nacional de Vigilância Sanitária. (1978). Resolução-CNNPA no 12, de 1978. São Paulo.

Broadhurst, R. B., & Jones, W. T. (1978). Analysis of condensed tannins using acidified vanillin. Journal of the Science of Food and Agriculture, 29(9) p.788-794. doi.org/10.1002/jsfa.2740290908

Buettner, A. (2017). Springer Handbook of Odor. Berlim:Springer.

Casarin, F., Mendes, C. E., Lopes, T. J., & Moura, N. F. de. (2016). Planejamento experimental do processo de secagem da amora-preta (Rubus sp.) para a produção de farinha enriquecida com compostos bioativos. Brazilian Journal of Food Technology, 19(7), p.1-9. doi.org/10.1590/1981-6723.2516

Celestino, S. M. C. (2010). Princípios de secagem de alimentos. EMBRAPA Cerrados, Planaltina, DF.

Companhia de Entrepostos e Armazéns Gerais de São Paulo. Centro de Qualidade, P. e D. (2016). A medida de doçura das frutas. Cartilha técnica 08. São Paulo, SP.

Costa, G. E. A., Queiroz-Monici, K. S., Reis, S. M. P. M., & de Oliveira, A. C. (2006). Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chemistry, 94(3), p.327–330. doi.org/10.1016/j.foodchem.2004.11.020

Dion, M., Ankawi, G., Chew, B., Paterson, R., Sultan, N., Hoddinott, P., & Razvi, H. (2016). CUA guideline on the evaluation and medical management of the kidney stone patient ‒ 2016 update. Canadian Urological Association Journal, 10(11-12), p.347-358. doi.org/10.5489/cuaj.4218

Downes, F. P., & Ito, K. (2001). Compendium of methods for the microbiological examination of foods. Washington: American Public Health Association.

El-Shemy, H. (2017). Active Ingredients from Aromatic and Medicinal Plants. Croatia: SPi Global.

Falade, O. S., Dara, A. F., Bello, M. O., Osuntogun, B. O., & Adewusi S. R. A. (2004). Varietal changes in proximate composition and the effect of processing on the Ascorbic acid content of some Nigeria vegetables, Journal of Food Technology, 2 (2), p.103–108.

Ferreira, M. de F. P., & Pena, R. da S. (2010). Estudo da secagem da casca do maracujá amarelo. Revista Brasileira de Produtos Agroindustriais, 12(1), p.15–28.

Fidyt, K., Fiedorowicz, A., Strządała, L., & Szumny, A. (2016). β-caryophyllene and β-caryophyllene oxide—natural compounds of anticancer and analgesic properties. Cancer Medicine, 5(10), p.3007-3017. doi.org/10.1002/cam4.816

García-Villanova, R., Garcia-Villanova, R. J., & de Lope, C. R. (1982). Determination of phytic acid by complexometric titration of excess of Iron (III). Analyst, 107(1281), p.1503–1506. doi.org/10.1039/an9820701503

Garcia, D. M., de Alencar, U. R., Mota, B. G., Borges, I. R., & de Souza, P. O. (2017). Determinação de características tecnológicas de farinhas produzidas a partir de resíduos de polpas de mamão, melão e goiaba e sua utilização na elaboração de biscoitos tipo cookies. ScientiaTec: Revista de Educação, Ciência e Tecnologia Do IFRS, 4(1), p.29–41.

Giusti, M. M., & Wrolstad, R. E. (2001). Characterization and measurement with UV-visible spectroscopy. Current protocols in food analytical chemistryy. 00(1), p.1-13.

Gordiano, E. A., Tondin, L. M., Miranda, R. C., Baptista, D. R., & Carvalho, M. (2014). Avaliação da ingestão alimentar e excreção de metabólitos na nefrolitíase. Jornal Brasileiro de Nefrologia, 36(4), p.437–445.doi.org/10.5935/0101-2800.20140063

Griffiths, D. W., Birch, A. N. E., & Hillman, J. R. (1998). Antinutritional compounds in the Brassicaceae: Analysis, biosynthesis, chemistry and dietary effects. Journal of Horticultural Science and Biotechnology, 73(1), p.1-18.

Instituto Adolfo Lutz. (2008). Métodos Físico-Químicos para Análise de Alimentos, São Paulo: Instituto Adolfo Lutz.

Kaur, S., Sharma, S., Dar, B. N., & Singh, B. (2012). Optimization of process for reduction of antinutritional factors in edible cereal brans. Food Science and Technology International, 18(5), p.455-454. doi.org/10.1177/1082013211428236

Khattab, R., Goldberg, E., Lin, L., & Thiyam, U. (2010). Quantitative analysis and free-radical-scavenging activity of chlorophyll, phytic acid, and condensed tannins in canola. Food Chemistry, 122, p.1266-1272. doi.org/10.1016/j.foodchem.2010.03.081

Kwiatkowski, A., Coimbra, P. S., Souza, G. S., Costa, C. C. O., Pereira, Q. D., & Minas, R. S. (2016). Influência dos processos de desidratação nos compostos bioativos em polpa de noni (Morinda citrifolia), XV CBCTA, Gramado, RS.

La Fuente, C. I. A., Zabalaga, R. F., & Tadini, C. C. (2017). Combined effects of ultrasound and pulsed-vacuum on air-drying to obtain unripe banana flour. Innovative Food Science and Emerging Technologies, 44(1), p.123-130. doi.org/10.1016/j.ifset.2017.07.005

Leal, A. S., Gonçalves, C. G., Vieira, I. F. R., Cunha, M. R. R., Gomes, T. C. B., & Marques, F. R. (2010). Avaliação da concentração de minerais e dos fatores antinutricionais fitato e oxalato em multimisturas da Região Metropolitana de Belo Horizonte/MG. Nutrire: Revista Da Sociedade Brasileira de Alimentação e Nutrição, 35(2), p.39–52.

Lee, J., Durst, R. W., & Wrolstad, R. E. (2005). Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study, Journal of AOAC International, 88(5), p.1269–1278.

Marques, T. R., Corrêa, A. D., Lino, J. B. dos R., Abreu, C. M. P. de, & Simão, A. A. (2013). Chemical constituents and technological functional properties of acerola (Malpighia emarginata DC.) waste flour. Food Science and Technology, 33(3), p.526-531. doi.org/10.1590/s0101-20612013005000085

Massey, L. K., Palmer, R. G., & Horner, H. T. (2001). Oxalate content of soybean seeds (Glycine max: Leguminosae), soyfoods, and other edible legumes. Journal of Agricultural and Food Chemistry, 49(9), p.4262-4266. doi.org/10.1021/jf010484y

Monje C. Y., & Raffaillac J. P. (2006). Determinación de saponina total en quinua (Chenopodium quinoa Willd) método Espectrofotométrico. In Memoria IV Congreso Nacional de la Asociación Boliviana de Protección Vegetal, Oruro, Bolivia.

Monteiro, M. L. G., Mársico, E. T., Soares Junior, M. S., Caliari, M., & Conte-Junior, C. A. (2019). Physicochemical stability of bread fortified with tilapia-waste flour. CyTA - Journal of Food, 17(1), p.36-43. doi.org/10.1080/19476337.2018.1547793

Narain, N., Almeida, J. N., Galvão, M. S., Madruga, M. S., & Brito, E. S. (2004). Compostos voláteis dos frutos maracujá (Passiflora edulis forma flavicarpa) e de cajá (Spondias mombin L) obtidos pela técnica de headspace dinâmico. Food Science and Technology, 24(2), p.212–216.

Nergiz, C., & Gökgöz, E. (2007). Effects of traditional cooking methods on some antinutrients and in vitro protein digestibility of dry bean varieties (Phaseolus vulgaris L.) grown in Turkey. International Journal of Food Science and Technology, 442(7), p.868-873. doi.org/10.1111/j.1365-2621.2006.01297.x

Nóbrega, E. M., Oliveira, E. L., Genovese, M. I., & Correia, R. T. P. (2014). The impact of hot air drying on the physical-chemical characteristics, bioactive compounds and antioxidant activity of acerola (Malphigia emarginata) residue. Journal of Food Processing and Preservation, 9(2), p.131-141. doi.org/10.1111/jfpp.12213

Nogueira, J. P., Pires De Siqueira, A. C., Dutra Sandes, R. D., De Sousa Galvão, M., Santos Leite Neta, M. T., & Narain, N. (2018). An insight into key volatile compounds in acerola (Malpighia emarginata DC.) pulp based on their odour activity values and chemometric evaluation. Analytical Methods, 48 (10), p.5851-5866. doi.org/10.1039/c8ay01427b

Oke, O. L. (1966). Chemical studies on the more commonly used leaf vegetables in Nigeria. Journal of the West African Science Association, 11(2), p.42–48.

Oliveira, L. M. N., Silva, L. M. R. da, Lima, A. C. S. de, Almeida, R. R. de, Ricardo, N. M. P. S., Figueiredo, E. A. T. de, & Figueiredo, R. W. de. (2020). Characterization of rutin, phenolic compounds and antioxidant capacity of pulps and by-products of tropical fruits. Research, Society and Development, 9(4), e42942812. doi.org/10.33448/rsd-v9i4.2812

Parker, J. K. (2015). Woodhead Publishing Series in Food Science, Technology and Nutrition, (1st ed.), Cambridge: (Elsevier Ltd.

Pereira, A.S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria: UAB / NTE / UFSM. Recuperado de: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Pereira, C. T. M., Silva, C. R. P., Lima, A., Pereira, D. M., Costa, C. N., & Neto, A. A. C. (2013). Obtenção, caracterização físico-química e avaliação da capacidade antioxidante in vitro da farinha do resíduo de acerola (Malpighia glabra L.). Acta Tecnológica, 8(2), p.50–56.

Pinho, L. X., Afonso, M. R. A., Carioca, J. O. B., Costa, J. M. C., & Rybka, A. C. P. (2011). Desidratação e aproveitamento de resíduo de pedúnculo de caju como adição de fibra na elaboração de hambúrguer. Alimentos e Nutrição, 22(4), p.571–576.

Prodanov, C. C & Freitas, E. C. (2013) Metodologia do trabalho científico: Métodos e Técnicas da Pesquisa e do Trabalho Acadêmico. [e-book], (3rd ed.), Novo Hamburgo: FEEAVALE. Recuperado de http://www.feevale.br/Comum/midias/8807f05a-14d0-4d5b-b1ad-1538f3aef538/E-book%20Metodologia%20do%20Trabalho%20Cientifico.pdf

Rezende, Y. R. R. S., Nogueira, J. P., & Narain, N. (2017). Comparison and optimization of conventional and ultrasound assisted extraction for bioactive compounds and antioxidant activity from agro-industrial acerola (Malpighia emarginata DC) residue. LWT - Food Science and Technology, p.85,158-169. doi.org/10.1016/j.lwt.2017.07.020

Rezende, Y. R. R. S., Nogueira, J. P., & Narain, N. (2018). Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: Chemical, morphological and chemometric characterization. Food Chemistry, 254, p.281-291. doi.org/10.1016/j.foodchem.2018.02.026

Ribeiro, H. L., Oliveira, A. V. de, Brito, E. S. d., Ribeiro, P. R. V., Souza Filho, M. de sá M., & Azeredo, H. M. C. (2018). Stabilizing effect of montmorillonite on acerola juice anthocyanins. Food Chemistry, 245, p.966-973. doi.org/10.1016/j.foodchem.2017.11.076

Romero-Aguilera, F., Alonso-Esteban, J. I., Torija-Isasa, M. E., Cámara, M., & Sánchez-Mata, M. C. (2017). Improvement and Validation of Phytate Determination in Edible Seeds and Derived Products, as Mineral Complexing Activity. Food Analytical Methods, 10(10), p.3285-3291. doi.org/10.1007/s12161-017-0890-6

Sancho, S. D. O., Da Silva, A. R. A., Dantas, A. N. D. S., Magalhaes, T. A., Lopes, G. S., Rodrigues, S., Silva, M. G. D. V. (2015). Characterization of the industrial residues of seven fruits and prospection of their potential application as food supplements. Journal of Chemistry, 2015(1), p.1-8. doi.org/10.1155/2015/264284

Santos, M. A. T. dos. (2006). Efeito do cozimento sobre alguns fatores antinutricionais em folhas de brócoli, couve-flor e couve. Ciência e Agrotecnologia, 30(2), p.294-301. doi.org/10.1590/s1413-70542006000200015

Santos, L. P., Morais, D. R., Souza, N. E., Cottica, S. M., Boroski, M., & Visentainer, J. V. (2011). Phenolic compounds and fatty acids in different parts of Vitis labrusca and V. vinifera grapes. Food Research International, 44(5), p.1414-1418. doi.org/10.1016/j.foodres.2011.02.022

Silva, M. L. C., Costa, R. S., Santana, A. dos S., & Koblitz, M. G. B. (2010). Compostos fenólicos, carotenóides e atividade antioxidante em produtos vegetais. Semina: Ciências Agrárias, 31(3), p.669–682.

Silva, P. B., Duarte, C. R., & Barrozo, M. A. S. (2019). A novel system for drying of agro-industrial acerola (Malpighia emarginata D. C.) waste for use as bioactive compound source. Innovative Food Science and Emerging Technologies, 52, p.350-357. doi.org/10.1016/j.ifset.2019.01.018

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), p.144-146.

Storck, C. R., Basso, C., Favarin, F. R., & Rodrigues, A. C. (2015). Qualidade microbiológica e composição de farinhas de resíduos da produção de suco de frutas em diferentes granulometrias. Brazilian Journal of Food Technology, 18(4), p.277–284. doi.org/10.1590/1981-6723.1615

Udomkun, P., Tirawattanawanich, C., Ilukor, J., Sridonpai, P., Njukwe, E., Nimbona, P., & Vanlauwe, B. (2019). Promoting the use of locally produced crops in making cereal-legume-based composite flours: An assessment of nutrient, antinutrient, mineral molar ratios, and aflatoxin content. Food Chemistry, 286, p.651-658. doi.org/10.1016/j.foodchem.2019.02.055

Wang, N., Hatcher, D. W., Tyler, R. T., Toews, R., & Gawalko, E. J. (2010). Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.). Food Research International, 43(2), p.589-594. doi.org/10.1016/j.foodres.2009.07.012

Zanatta, C. L., Schlabitz, C., & Ethur, E. M. (2010). Avaliação físico-química e microbiológica de farinhas obtidas a partir de vegetais não conformes à comercialização. Alimentos e Nutrição, 21(3), p.459–468.

Downloads

Published

15/09/2020

How to Cite

Barros, V. M., Moreira, J. de J. da S., Leite Neta, M. T. S., Nunes, T. P., Vasvary, E. H. S. C., Narain, N., & Wartha, E. R. S. de A. (2020). Reduction of antinutrients and maintenance of bioactive compounds in flour from agro-industrial residue of acerola (Malpighia emarginata D.C.). Research, Society and Development, 9(9), e980998054. https://doi.org/10.33448/rsd-v9i9.8054

Issue

Section

Agrarian and Biological Sciences