Optimization by response surface methodology for production of β-galactosidase from Enterococcus faecium using recycled medium
DOI:
https://doi.org/10.33448/rsd-v9i10.8135Keywords:
Recycled medium; Response surface methodology; Enzyme.Abstract
In this study, recycled medium from three photosynthetic microorganisms (Chlorella vulgaris, Dunaliella tertiolecta and Arthrospira platensis) was evaluated for use in producing β-galactosidase, an enzyme traditionally used to degrade lactose in dairy products. Recycled medium from Chlorella vulgaris was selected to optimize culture medium to be used to produce β-galactosidase by Enterococcus faecium in submerged fermentation. Response Surface Methodology (RSM) was used to optimize the levels of the variables: temperature (30-40°C), lactose concentration (0-5%), fermentation time (12-24h), pH (6-8) and their interaction. All variables studied had a statistically significant effect on the production of β-galactosidase. The optimal conditions for producing the enzyme were achieved: temperature of 31ºC, lactose concentration of 5.34%, fermentation time of 12h and pH of 8.0. Under these conditions, the β-galactosidase activity was 29.85 U/mL which was quite close to the predicted value (30.83 U/mL). Finally, it can be concluded that recycled medium from optimized C. vulgaris supernatant may well be important for the biotechnology industry as it is an abundant low-cost source for producing β-galactosidase by Enterococcus faecium.
References
Akolkar, S. K., Sajgure, A., & Lele, S. S. (2005). Lactase production from Lactobacillus acidophilus. World Journal of Microbiology and Biotechnology, 21(6–7), 1119–1122.
Ansari, S. A., & Satar, R. (2012). Recombinant β-galactosidases - Past, present and future: A mini review. Journal of Molecular Catalysis B: Enzymatic, 81, 1–6.
Barros Neto, B., Scarminio, I. S., & Bruns, R. E. (1995). Planejamento e otimização de experimentos. 2nd ed. Campinas- SP, Brasil: Editora da UNICAMP.
Berry, J. P. (2008). Cyanobacterial Toxins as Allelochemicals with Potential Applications as Algaecides, Herbicides and Insecticides. Marine Drugs, 6 (2), 117–146.
Bosso, A., Iglecias Setti, A. C., Tomal, A. B., Guemra, S., Morioka, L. R. I., & Suguimoto, H. H. (2019). Substrate consumption and beta-galactosidase production by Saccharomyces fragilis IZ 275 grown in cheese whey as a function of cell growth rate. Biocatalysis and Agricultural Biotechnology, 21, 101335.
Braga, A. R. C., Gomes, P. A., & Kalil, S. J. (2012). Formulation of Culture Medium with Agroindustrial Waste for β-Galactosidase Production from Kluyveromyces marxianus ATCC 16045. Food and Bioprocess Technology, 5(5), 1653–1663.
Chanalia, P., Gandhi, D., Attri, P., & Dhanda, S. (2018). Purification and characterization of β-galactosidase from probiotic Pediococcus acidilactici and its use in milk lactose hydrolysis and galactooligosaccharide synthesis. Bioorganic Chemistry, 77, 176–189.
Chauhan, B., & Gupta, R. (2004). Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14. Process Biochemistry, 39(12), 2115–2122.
Chen, M., Tang, H., Ma, H., Holland, T. C., Ng, K. Y. S., & Salley, S. O. (2011). Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource Technology, 102(2), 1649–1655.
Dagbagli, S., & Goksungur, Y. (2008). Optimization of β-galactosidase production using Kluyveromyces lactis NRRL Y-8279 by response surface methodology. Electronic Journal of Biotechnology, 11(4).
Das, B., Prasad, A., Bhattacharjee, S., & Chakraborty, S. (2015). Ecotoxicology and Environmental Safety Lactose hydrolysis by β -galactosidase enzyme : optimization using response surface methodology. Ecotoxicology and Environmental Safety, 121, 244–252.
De Jesus Raposo, M. F., De Morais, R. M. S. C., & De Morais, A. M. M. B. (2013). Health applications of bioactive compounds from marine microalgae. Life Sciences, 93(15), 479–486.
Depraetere, O., Pierre, G., Noppe, W., Vandamme, D., Foubert, I., Michaud, P., & Muylaert, K. (2015). Influence of culture medium recycling on the performance of Arthrospira platensis cultures. Algal Research, 10, 48–54.
Domingues, L., Lima, N., & Teixeira, J. A. (2005). Aspergillus niger β-galactosidase production by yeast in a continuous high cell density reactor. Process Biochemistry, 40(3–4), 1151–1154.
Duan, X., Hu, S., Qi, X., Gu, Z., & Wu, J. (2017). Optimal extracellular production of recombinant Bacillus circulans β-galactosidase in Escherichia coli BL21(DE3). Process Biochemistry, 53, 17–24.
El-naggar, N. E., Hussein, M. H., & Shaaban-dessuuki, S. A. (2020). Production , extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth, 1–19.
Farooq, W., Suh, W. I., & Park, M. S. (2015). Water use and its recycling in microalgae cultivation for biofuel application. Bioresource Technology, 184, 73–81.
Fogg, G. E. (1983). The Ecological Significance of Extracellular Products of Phytoplankton Photosynthesis. Botanica Marina, 26(1), 3–14.
Freitas, A. C., Pintado, A. E., Pintado, M. E., & Malcata, F. X. (1999). Organic acids produced by Lactobacilli, enterococci and yeasts isolated from Picante cheese. European Food Research and Technology, 209(6), 434–438.
Fret, J., Roef, L., Blust, R., Diels, L., Tavernier, S., Vyverman, W., & Michiels, M. (2017). Reuse of rejuvenated media during laboratory and pilot scale cultivation of Nannochloropsis sp. Algal Research, 27, 265–273.
Gangl, D., Zedler, J. A. Z., Rajakumar, P. D., Martinez, E. M. R., Riseley, A., Włodarczyk, A., Robinson, C. (2015). Biotechnological exploitation of microalgae. Journal of Experimental Botany, 66(22), 6975–6990.
Giraldo Calderón, N. D., Díaz Bayona, K. C., & Atehortúa Garcés, L. (2018). Immobilization of the green microalga Botryococcus braunii in polyester wadding: Effect on biomass, fatty acids, and exopolysaccharide production. Biocatalysis and Agricultural Biotechnology, 14, 80–87.
Hadj-Romdhane, F., Jaouen, P., Pruvost, J., Grizeau, D., Van Vooren, G., & Bourseau, P. (2012). Development and validation of a minimal growth medium for recycling Chlorella vulgaris culture. Bioresource Technology, 123, 366–374.
Hadj-romdhane, F., Zheng, X., Jaouen, P., Pruvost, J., Grizeau, D., Croué, J. P., & Bourseau, P. (2013). The culture of Chlorella vulgaris in a recycled supernatant : Effects on biomass production and medium quality. Bioresource Technology, 132, 285–292.
Hadj-Romdhane, F., Zheng, X., Jaouen, P., Pruvost, J., Grizeau, D., Croué, J. P., & Bourseau, P. (2013). The culture of Chlorella vulgaris in a recycled supernatant: Effects on biomass production and medium quality. Bioresource Technology, 132, 285–292.
Hongpattarakere, T., Cherntong, N., Wichienchot, S., Kolida, S., & Rastall, R. A. (2012). In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria. Carbohydrate Polymers, 87(1), 846–852.
Hsu, C. A., Yu, R. C., & Chou, C. C. (2005). Production of β-galactosidase by Bifidobacteria as influenced by various culture conditions. International Journal of Food Microbiology, 104(2), 197–206.
Kamran, A., Bibi, Z., Aman, A., & Qader, S. A. U. (2016). Lactose hydrolysis approach: Isolation and production of β-galactosidase from newly isolated Bacillus strain B-2. Biocatalysis and Agricultural Biotechnology, 5, 99–103.
Khovrytchev, M. P., Strunk, C., Schuhmann, E., Lirova, S. A., & Rabotnova, I. L. (1977). Einfluß der Cu++-Ionen auf den morphologischen, cytologischen und physiologischen Zustand von Candida utilis-Zellen bei kontinuierlicher Kultivierung. Zeitschrift Für Allgemeine Mikrobiologie, 17(1), 29–45.
Liu, C., Kolida, S., Charalampopoulos, D., & Rastall, R. A. (2020). An evaluation of the prebiotic potential of microbial levans from Erwinia sp. 10119. Journal of Functional Foods, 64, 103668.
Liu, L., Pohnert, G., & Wei, D. (2016). Extracellular metabolites from industrial microalgae and their biotechnological potential. Marine Drugs, 14(10), 1–19.
Martarello, R. D., Cunha, L., Cardoso, S. L., de Freitas, M. M., Silveira, D., Fonseca-Bazzo, Y. M., … Magalhães, P. O. (2019). Optimization and partial purification of beta-galactosidase production by Aspergillus niger isolated from Brazilian soils using soybean residue. AMB Express, 9(1).
Murad, H. A., Refaea, R. I., Aly, E. M., & Office, E. C. (2011). Utilization of UF-Permeate for Production of β-galactosidase by Lactic Acid Bacteria, 60(2), 139–144.
Nagy, Z., Kiss, T., Szentirmai, A., & Biró, S. (2001). β-Galactosidase of Penicillium chrysogenum: Production, Purification, and Characterization of the Enzyme. Protein Expression and Purification, 21(1), 24–29.
Panesar, P. S. (2008). Production of β-D-galactosidase from whey using Kluyveromyces marxianus. Research Journal of Microbiology, 3(1), 24-29.
Panesar, P. S., Panesar, R., Singh, R. S., Kennedy, J. F., & Kumar, H. (2006). Microbial production, immobilization and applications of β-D-galactosidase. Journal of Chemical Technology and Biotechnology, 81(4), 530–543.
Parada, J. L., Zulpa de Caire, G., Zaccaro de Mulé, M. C., & Storni de Cano, M. M. (1998). Lactic acid bacteria growth promoters from Spirulina platensis. International Journal of Food Microbiology, 45(3), 225-228.
Prasad, L. N., 2, Ghosh, B. C., 3, & Sherkat, F. and Shah, N. P. (2013). Extraction and characterisation of β-galactosidase produced by Bifidobacterium animalis spp. lactis Bb12 and Lactobacillus delbrueckii spp. bulgaricus ATCC 11842 grown in whey. International Food Research Journal, 20, 487–494.
Ramana Rao, M. V., & Dutta, S. M. (1977). Production of beta-galactosidase from Streptococcus thermophilus grown in whey. Applied and Environmental Microbiology, 34(2), 185–188.
Rodolfi, L., Zittelli, G. C., Barsanti, L., Rosati, G., & Tredici, M. R. (2003). Growth medium recycling in Nannochloropsis sp. mass cultivation. Biomolecular Engineering, 20(4–6), 243–248.
Silva, R. A., Lima, M. S. F., Viana, J. B. M., Bezerra, V. S., Pimentel, M. C. B., Porto, A. L. F., Filho, J. L. L. (2012). Can artisanal ‘“ Coalho ”’ cheese from Northeastern Brazil be used as a functional food. Food Chemistry, 135(3), 1533–1538.
WS Reznikoff, J. A. (1978). Lucid overview of bile salts. New York.
Zhang, J., Liu, L., & Chen, F. (2019). Production and characterization of exopolysaccharides from Chlorella zofingiensis and Chlorella vulgaris with anti-colorectal cancer activity.
International Journal of Biological Macromolecules, 134, 976–983.
Zhang, J., Liu, L., Ren, Y., & Chen, F. (2019). Characterization of exopolysaccharides produced by microalgae with antitumor activity on human colon cancer cells. International Journal of Biological Macromolecules, 128, 761–767.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Elaine Cristina da Silva; Priscilla Régia de Andrade Calaça ; Ana Lúcia Figueiredo Porto; Raquel Pedrosa Bezerra; Maria Taciana Cavalcanti Vieira Soares
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.