Analysis of the chemical profile of cerrado pear fixed compounds by mass spectrometry with paper spray and volatile ionization by SPME-HS CG-MS
DOI:
https://doi.org/10.33448/rsd-v9i9.8219Keywords:
Solid-phase microextraction; paper spray; cerrado pear; volatile compoundsAbstract
Eugenia klotzschiana Berg is a native fruit of the cerrado, belonging to the Myrtaceae family, known as the cerrado pear and very little explored. The present study's objective was to obtain the profile of the fixed and volatile chemical constituents of the fruit. Mass spectrometry with ambient ionization paper spray (PS-MS) was used in positive and negative mode for fixed compounds. For volatiles, solid-phase microextraction by head space and gas chromatography was employed. The PS-MS identified 31 compounds, 21 in the negative and 10 in the positive mode, including fatty acids, flavonoids, phenolic acids, tannins and sugars. The solid-phase microextraction method was used in head space mode, using the polydimethylsiloxane-divinylbenzene fiber to extract volatile organic compounds (VOCs). The volatiles detected totaled 11 substances, belonging to the class of monoterpenes, sesquiterpenes, and esters. PS-MS was capable and efficient in determining the fixed compounds present in the cerrado pear pulp, providing the chemical profile of the fruit, which contains essential compounds with potential antioxidant bioactivity. The volatile profile was obtained with success, indicating menthol, fruity and vanilla notes in the pulp of the cerrado pear.
References
Andrade, J. M. D. M., Marin, R., Apel, M. A., Maria, J., Andrade, D. M., Marin, R., Apel, M. A., et al. (2012). Comparison of the Fatty Acid Profiles of Edible Native Fruit Seeds from Southern Brazil. International Journal of Food Properties ISSN:, 15(0), 815–822.
Arruda, H. S., Pereira, G. A., Morais, D. R., Eberlin, M. N., & Pastore, G. M. (2018). Determination of free, esterified, glycosylated and insoluble-bound phenolics composition in the edible part of araticum fruit (Annona crassiflora Mart.) and its by-products by HPLC-ESI-MS/MS. Food Chemistry, 245(December 2017), 738–749. Elsevier. Retrieved from https://doi.org/10.1016/j.foodchem.2017.11.120
Babu, T. M. C., Rammohan, A., Baki, V. B., Devi, S., Gunasekar, D., & Rajendra, W. (2016). Development of novel HER2 inhibitors against gastric cancer derived from flavonoid source of Syzygium alternifolium through molecular dynamics and pharmacophore-based screening. Drug Design, Development and Therapy, 10, 3611–3632.
Bailão, E. F. L. C., Devilla, I. A., da Conceição, E. C., & Borges, L. L. (2015). Bioactive compounds found in Brazilian cerrado fruits. International Journal of Molecular Sciences, 16(10), 23760–23783.
Barros, L., Calhelha, R. C., Queiroz, M. J. R. P., Santos-Buelga, C., Santos, E. A., Regis, W. C. B., & Ferreira, I. C. F. R. (2015). The powerful in vitro bioactivity of Euterpe oleracea Mart. seeds and related phenolic compounds. Industrial Crops and Products, 76(0), 318–322. Elsevier B.V. Retrieved from http://dx.doi.org/10.1016/j.indcrop.2015.05.086
Bianchin, J. N. (2015). Otimização de novas metodologias para extração de compostos voláteis de matrizes alimentícias e contaminantes ambientais por microextração em fase sólida e cromatografia a gás. Universidade Federal de Santa Catarina. Retrieved from https://repositorio.ufsc.br/xmlui/bitstream/handle/123456789/159630/337298.pdf?sequence=1&isAllowed=y
Bianchin, J. N., Nardini, G., Merib, J., Dias, A. N., Martendal, E., & Carasek, E. (2012). Simultaneous determination of polycyclic aromatic hydrocarbons and benzene, toluene, ethylbenzene and xylene in water samples using a new sampling strategy combining different extraction modes and temperatures in a single extraction solid-phase microextra. Journal of Chromatography A, 1233, 22–29. Elsevier B.V. Retrieved from http://dx.doi.org/10.1016/j.chroma.2012.02.022
Campelo, F. A., Henriques, G. S., Simeone, M. L. F., Queiroz, V. A. V., Silva, M. R., Augusti, R., Melo, J. O. F., et al. (2019). Study of Thermoplastic Extrusion and Its Impact on the Chemical and Nutritional Characteristics and Two Sorghum Genotypes SC 319 and BRS 332. Journal of the Brazilian Chemical Society, 00(00), 1–15.
Canuto, K. M., Garruti, D. dos S., & Magalhães, H. C. R. (2011). Comunicado Técnico 166. Embrapa: comunicado técnico, 166(1), 1–4.
Carlos, W. S., Ii, P., & Foreyt, J. P. (1999). A obesidade é uma questão ambiental. Elsevier Atherosclerosis, 146(1), 201–209.
Carneiro, N. S. (2016). Atividade antioxidante da polpa e éleo essencial da pera do cerrado (Eugenia klotzschiana Berg.). Instituto Federal Goiano-Campus Rio Verde.
Carneiro, N. S., Alves, J. M., Alves, C. C. F., Esperandim, V. R., & Miranda, M. L. D. (2017). Essential oil of flowers from eugenia klotzschiana (myrtaceae): Chemical composition and in vitro trypanocidal and cytotoxic activities. Revista Virtual de Quimica, 9(3), 1381–1392.
Chailungka, A., Junpirom, T., Pompimon, W., Nuntasaen, N., & Meepowpan, P. (2017). Two flavonoids first isolated from the seed of Syzygium nervosum and preliminary study of their anticancer and anti-HIV-1 reverse transcriptase activities. Maejo International Journal of Science and Technology, 11(1), 58–67.
Dong, X., Huang, Y., Wang, Y., & He, X. (2019). Anti-inflammatory and antioxidant jasmonates and flavonoids from lychee seeds. Journal of Functional Foods, 54(January), 74–80. Elsevier. Retrieved from https://doi.org/10.1016/j.jff.2018.12.040
Flores, G., Dastmalchi, K., Paulino, S., Whalen, K., Dabo, A. J., Reynertson, K. A., Foronjy, R. F., et al. (2012). Anthocyanins from Eugenia brasiliensis edible fruits as potential therapeutics for COPD treatment. Food Chemistry, 134(3), 1256–1262. Elsevier Ltd. Retrieved from http://dx.doi.org/10.1016/j.foodchem.2012.01.086
Gao, H., Li, P., Xu, X., Zeng, Q., & Guan, W. (2018). Research on volatile organic compounds from Bacillus subtilis CF-3: Biocontrol effects on fruit fungal pathogens and dynamic changes during fermentation. Frontiers in Microbiology, 9(MAR), 1–15.
Garcia, Y. M., Guedes, M. N. S., Rufini, J. C. M., Souza, A. G., Augusti, R., & Melo, J. O. F. (2016). Volatile compounds identified in Barbados Cherry ‘BRS-366 Jaburú.’ Scientific Electronic Archives, 9(3), 67.
García, Y. M., Rufini, J. C. M., Campos, M. P., Guedes, M. N. S., Augusti, R., & Melo, J. O. F. (2019). SPME fiber evaluation for volatile organic compounds extraction from acerola. Journal of the Brazilian Chemical Society, 30(2), 247–255.
Grace, M. H., Esposito, D., Dunlap, K. L., & Lila, M. A. (2014). Comparative analysis of phenolic content and profile, antioxidant capacity, and anti-inflammatory bioactivity in wild alaskan and commercial vaccinium berries. Journal of Agricultural and Food Chemistry, 62(18), 4007–4017.
Hoffmann, Edmond de; Stroobant, V. (2007). Mass Spectrometry Principles and Applications. (J. S. Wiley, Ed.)Methods in Molecular Biology (3a.). Austrália: Wiley.
Krongyut, O., & Sutthanut, K. (2019). Phenolic profile, antioxidant activity, and anti-obesogenic bioactivity of mao luang fruits (antidesma bunius l.). Molecules, 24(22).
Liu, J, L., Wang, H., Manicke, N. E., Lin, J.-M., Cooks, R. G., & Ouyang, Z. (2017). Development and Application of Paper Spray Ionization Mass Spectrometry. Progress in Chemistry, 29(6), 659–666.
Liu, X., Zeng, X., Chen, X., Luo, R., Li, L., Wang, C., Liu, J., et al. (2019). Oleic acid protects insulin-secreting INS-1E cells against palmitic acid-induced lipotoxicity along with an amelioration of ER stress. Endocrine, 64(3), 512–524. Springer US. Retrieved from http://dx.doi.org/10.1007/s12020-019-01867-3
Mahan, K., Escott-stump, S., & Raymond, J. L. (2013). Krause: Nutrição e dietoterapia. (Elsevier, Ed.) (13a Traduz.).
Mastello, R. B., Janzantti, N. S., Bisconsin-Júnior, A., & Monteiro, M. (2018). Impact of HHP processing on volatile profile and sensory acceptance of Pêra-Rio orange juice. Innovative Food Science and Emerging Technologies, 45(December 2016), 106–114. Elsevier. Retrieved from https://doi.org/10.1016/j.ifset.2017.10.008
Nagarajan, V., & Chandiramouli, R. (2018). Interaction of volatile organic compounds (VOCs) emitted from banana on stanene nanosheet—a first-principles studies. Structural Chemistry, 29(5), 1321–1332. Structural Chemistry.
Oliveira, C. T., Ramos, A. L. C. C., Mendonça, H. de Ol. P., Consenza, G. P., Silva, M. R., Fernandes, C., Augusti, R., et al. (2020). Quantification of 6-gingerol, metabolomic analysis by paper spray mass spectrometry and determination of antioxidant activity of ginger rhizomes (Zingiber officinale). Research, Society and Development, 9(8), e366984822.
de Oliveira, L. M., Porte, A., de Oliveira Godoy, R. L., da Costa Souza, M., Pacheco, S., de Araujo Santiago, M. C. P., Gouvêa, A. C. M. S., et al. (2018). Chemical characterization of Myrciaria floribunda (H. West ex Willd) fruit. Food Chemistry, 248(December 2017), 247–252. Elsevier. Retrieved from https://doi.org/10.1016/j.foodchem.2017.12.053
Pegoraro, N. S., Camponogara, C., Gehrcke, M., Giuliani, L. M., da Silva, D. T., Maurer, L. H., Dias, P., et al. (2019). Oleic acid-containing semisolid dosage forms exhibit in vivo anti-inflammatory effect via glucocorticoid receptor in a UVB radiation-induced skin inflammation model. Inflammopharmacology, 28(3), 773–786. Springer International Publishing. Retrieved from https://doi.org/10.1007/s10787-019-00675-5
Pereira, H. V., Amador, V. S., Sena, M. M., Augusti, R., & Piccin, E. (2016). Paper spray mass spectrometry and PLS-DA improved by variable selection for the forensic discrimination of beers. Analytica Chimica Acta, 940, 104–112.
Picard, M., de Revel, G., & Marchand, S. (2017). First identification of three p-menthane lactones and their potential precursor, menthofuran, in red wines. Food Chemistry, 217, 294–302. Elsevier Ltd. Retrieved from http://dx.doi.org/10.1016/j.foodchem.2016.08.070
Ramos, A. L. C. C., Mendes, D. D., Silva, M. R., Augusti, R., Melo, J. O. F., Araújo, R. L. B. de, & Lacerda, I. C. A. (2020). Chemical profile of Eugenia brasiliensis (Grumixama) pulp by PS/MS paper spray and SPME-GC / MS solid-phase microextraction Perfil. Research, Society and Development (Vol. 9).
Reddy, K. V. K., & Naidu, K. A. (2016). Oleic acid, hydroxytyrosol and n-3 fatty acids collectively modulate colitis through reduction of oxidative stress and IL-8 synthesis; In vitro and in vivo studies. International Immunopharmacology, 35, 29–42. Elsevier B.V. Retrieved from http://dx.doi.org/10.1016/j.intimp.2016.03.019
Ribeiro, J. F., Peres, M. K., Santos, D. da S., Sampaio, A. B., Ogata, R. S., Souza, R. M., Oliveira, M. C. de, et al. (2018). Época de coleta de frutos e sementes nativos para recomposição ambiental no bioma Cerrado. Embrapa Cerrados, 74.
Rufino, M. do S. M., Alves, R. E., de Brito, E. S., Pérez-Jiménez, J., Saura-Calixto, F., & Mancini-Filho, J. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 121(4), 996–1002. Elsevier Ltd. Retrieved from http://dx.doi.org/10.1016/j.foodchem.2010.01.037
Santos, B. O., Augusti, R., Melo, J. O. F., Takahashi, J. A., & Araújo, R. L. B. de. (2020). Optimization of extraction conditions of volatile compounds from pequi peel (Caryocar brasiliense Camb.) using HS-SPME. Research, Society and Development, 9(7), 1–9. Retrieved from https://doi.org/10.1016/j.solener.2019.02.027%0Ahttps://www.golder.com/insights/block-caving-a-viable-alternative/%0A???
Silva, M. R., Bueno, G. H., Araújo, R. L. B., Lacerda, I. C. A., Freitas, L. G., Morais, H. A., Augusti, R., et al. (2019). Evaluation of the influence of extraction conditions on the isolation and identification of Volatile compounds from Cagaita (Eugenia dysenterica) using HS‑SPME/GC‑MS. Journal of the Brazilian Chemical Society, 30(2), 379–387.
Silva, M. R., Freitas, L. G., Souza, A. G., Araújo, R. L. B., Lacerda, I. C. A., Pereira, H. V., Augusti, R., et al. (2019). Antioxidant Activity and Metabolomic Analysis of Cagaitas (Eugenia dysenterica) Using using Paper Paper Spray Spray Mass Mass Spectrometry Spectrometry. Journal of the Brazilian Chemical Society, 30(5), 1034–1044.
Sobeh, M., Esmat, A., Petruk, G., Abdelfattah, M. A. O., Dmirieh, M., Monti, D. M., Abdel-Naim, A. B., et al. (2018). Phenolic compounds from Syzygium jambos (Myrtaceae) exhibit distinct antioxidant and hepatoprotective activities in vivo. Journal of Functional Foods, 41(December 2017), 223–231. Elsevier. Retrieved from https://doi.org/10.1016/j.jff.2017.12.055
de Souza, L. C. D., de Sá, M. E., de Moraes, S. M. B., de Carvalho, M. A. C., da Silva, M. P., & Abrantes, F. L. (2012). Composição química e nutrientes em sementes das espécies florestais pente de macaco, flor de paca, itaúba, jatobá e murici manso. Bioscience Journal, 28(3), 478–483.
Teixeira, L. D. L., Bertoldi, F. C., Lajolo, F. M., & Hassimotto, N. M. A. (2015). Identification of Ellagitannins and Flavonoids from Eugenia brasilienses Lam. (Grumixama) by HPLC-ESI-MS/MS. Journal of Agricultural and Food Chemistry, 63(22), 5417–5427.
Tietbohl, L. A. C., Oliveira, A. P., Esteves, R. S., Albuquerque, R. D. D. G., Folly, D., Machado, F. P., Corrêa, A. L., et al. (2017). Antiproliferative activity in tumor cell lines, antioxidant capacity and total phenolic, flavonoid and tannin contents of Myrciaria floribunda. Anais da Academia Brasileira de Ciencias, 89(2), 1111–1120.
Vallilo, M. I., Battello, J. B., Lamardo, L., & Lobanco, C. M. (2003). Composicao quimica do fruto de Eugenia klotzschiana Berg. (Myrtaceae). Revista do Instituto Florestal, 15(1), 37–44. Retrieved from http://iflorestal.sp.gov.br/publicacoes-if/revista-do-if/sumario_v15_1/
Wińska, K., Mączka, W., Łyczko, J., Grabarczyk, M., Czubaszek, A., & Szumny, A. (2019). Essential oils as antimicrobial agents—myth or real alternative? Molecules, 24(11), 1–21.
Xiao, Z., Li, Q., Niu, Y., Zhou, X., Liu, J., Xu, Y., & Xu, Z. (2017). Odor-active compounds of different lavender essential oils and their correlation with sensory attributes. Industrial Crops and Products, 108(March), 748–755.
Yang, L., Zhu, Y., He, Z., Zhang, T., Xiao, Z., Xu, R., & He, J. (2020). Plantanone D, a new rare methyl-flavonoid from the flowers of Hosta plantaginea with anti-inflammatory and antioxidant activities. Natural Product Research, 0(0), 1–7. Taylor & Francis. Retrieved from https://doi.org/10.1080/14786419.2020.1713121
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Ana Paula Xavier Mariano; Ana Luiza Coeli Cruz Ramos; Rodinei Augusti; Raquel Linhares Bello Araújo; Júlio Onésio Ferreira Melo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.