Effect of laser on the biomodulation of osteogenesis in animal model





Bone development; Laser therapy; Osteogenesis; Rats; Oral surgery.


Low power laser therapy is used as a medical and dental therapeutic resource, in order to enable its therapeutic effect on the body. Experimental tests on laboratory and animal models, with well-defined methodological criteria, suggest that low level laser therapy (LLLT - Low Level Laser Therapy) modulates several biological processes in animal models after being exposed to some trauma. This study aimed to evaluate the biomodulation of osteogenesis, using the infrared laser, in the skull cap of rats after making critical defects. The biological reactions of tissues submitted to laser were analyzed, comparing the intensity of bone neoformation, randomly distributed in four groups. Control groups (GC-I-II) did not receive a laser; the tests (GT-I-II) were treated with infrared laser, both at 2J / cm2 and at 90mW. Animal sacrifice and microscopic analysis, with HE staining, occurred in 07 and 21 days. The descriptive results showed that the groups irradiated with biomodulated laser positively affected the osteogenesis process, as they presented, at 07 and 21 days, a pattern of superior bone neoformation. The statistical analysis showed a superior bone neoformation score in both groups for 21 days, with larger areas of neoformation being observed. From the methodology used and with the radiation parameters used, in addition to the quantitative and histomorphometric descriptive results obtained in this research, it can be concluded that: LLLT can be used as an adjunct in the osteogenesis process in the repair of bone tissue. However, it is necessary to conduct clinical trials that prove its applicability.


Basford, J. R. (1995). Low intensity laser therapy: still not an established clinical tool. Lasers in Surgery and Medicine. 16(4), 331-342.

da Silva, R. M., & de Andrade, P. R. (2012). A laserterapia na osteogênese: uma revisão de literatura. Revista de Atenção à Saúde, 10(34), 56-62.

De Marco, R., Sant'Ana, E., & Ribeiro, E. D. (2020). Uso de laserterapia em pós-operatório de osteotomias sagitais bilaterais do ramo mandibular: revisão de literatura. Research, Society and Development, 9(9), e125997103-e125997103.

Dörtbudak, O., Haas, R., & Mailath‐Pokorny, G. (2000). Biostimulation of bone marrow cells with a diode soft laser. Clinical oral implants research, 11(6), 540-545.

Freitas, I. G. F., Baranauskas, V., & Cruz-Höfling, M. A. (2000). Laser effects on osteogenesis. Applied Surface Science, 154, 548-554.

Fronza, B., Somacal, T., Mayer, L., De Moraes, J. F., De Oliveira, M. G., & Weber, J. B. B. (2013). Assessment of the systemic effects of low-level laser therapy (LLLT) on thyroid hormone function in a rabbit model. International journal of oral and maxillofacial surgery, 42(1), 26-30.

Gerbi, M. E. M., Pinheiro, A. L. B., Marzola, C., Júnior, F. D. A. L., Ramalho, L., Ponzi, E. A., ... & Gonçalves, T. O. (2005). Assessment of bone repair associated with the use of organic bovine bone and membrane irradiated at 830 nm. Photomedicine and Laser Therapy, 23(4), 382-388.

Gordjestani, M., Dermaut, L., & Thierens, H. (1994). Infrared laser and bone metabolism: a pilot study. International Journal of Oral and Maxillofacial Surgery, 23(1), 54-56.

Hallman, H. O., Basford, J. R., O'Brien, J. F., & Cummins, L. A. (1988). Does low‐energy helium‐neon laser irradiation alter “in vitro” replication of human fibroblasts?. Lasers in surgery and medicine, 8(2), 125-129.

Karu, T. (1989). Photobiology of low-power laser effects. Health phys, 56(5), 691-704.

Kawasaki, K., & Shimizu, N. (2000). Effects of low‐energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 26(3), 282-291.

Khadra, M., Lyngstadaas, S. P., Haanæs, H. R., & Mustafa, K. (2005). Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials, 26(17), 3503-3509.

Kolárová, H., Ditrichová, D., & Wagner, J. (1999). Penetration of the laser light into the skin in vitro. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 24(3), 231-235.

Kreisler, M., Christoffers, A. B., Al‐Haj, H., Willershausen, B., & d'Hoedt, B. (2002). Low level 809‐nm diode laser‐induced in vitro stimulation of the proliferation of human gingival fibroblasts. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 30(5), 365-369.

Merli, L. A. D. S., Santos, M. T. B. R. D., Genovese, W. J., & Faloppa, F. (2005). Effect of low-intensity laser irradiation on the process of bone repair. Photomedicine and Laser Therapy, 23(2), 212-215.

Pinheiro, A. L. B., & Gerbi, M. E. M. (2006). Photoengineering of bone repair processes. Photomedicine and Laser Therapy, 24(2), 169-178.

Saito, S., Shimizu, N., & of Dentistry, F. N. U. S. (1997). Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. American Journal of Orthodontics and Dentofacial Orthopedics, 111(5), 525-532.

Shamir, M. H., Rochkind, S., Sandbank, J., & Alon, M. (2001). Double-blind randomized study evaluating regeneration of the rat transected sciatic nerve after suturing and postoperative low-power laser treatment. Journal of reconstructive microsurgery, 17(02), 133-138.

Silva Júnior, A. N., Pinheiro, A. L., Oliveira, M. G., Weismann, R., Pedreira Ramalho, L. M., & Amadei Nicolau, R. (2002). Computerized morphometric assessment of the effect of low-level laser therapy on bone repair: an experimental animal study. Journal of clinical laser medicine & surgery, 20(2), 83-87.

Silva, R. V., & Camilli, J. A. (2006). Repair of bone defects treated with autogenous bone graft and low-power laser. Journal of Craniofacial Surgery, 17(2), 297-301.

Ueda, Y., & Shimizu, N. (2003). Effects of pulse frequency of low-level laser therapy (LLLT) on bone nodule formation in rat calvarial cells. Journal of clinical laser medicine & surgery, 21(5), 271-277.

Weber, J. B. B., Pinheiro, A. L. B., Oliveira, M. G. D., Oliveira, F. A. M., & Ramalho, L. M. P. (2006). Laser therapy improves healing of bone defects submitted to autologus bone graft. Photomedicine and Laser Surgery, 24(1), 38-44.

Yasukawa A., Hrui H., Koyama Y., Nagai M., Takakuda K. (2007). The effect of low reactive level laser therapy (LLLT) whit heliun-neon laser onoperative wound healing in a rat model. J VetMed Sci. 69(8), 799-806.



How to Cite

Gondim, A. L. M. F., Dantas, W. R. M., Dantas, E. M., Oliveira, H. T. R. de, Almeida Neto, L. F. de, Marcelino, K. P., & Pagnoncelli, R. M. (2020). Effect of laser on the biomodulation of osteogenesis in animal model. Research, Society and Development, 9(9), e926998294. https://doi.org/10.33448/rsd-v9i9.8294



Health Sciences